We examine the gravity-driven flow of a thin film of viscous fluid spreading over a rigid plate that is lubricated by another viscous fluid. We model the flow over such a ‘soft’ substrate by applying the principles of lubrication theory, assuming that vertical shear provides the dominant resistance to the flow. We do so in axisymmetric and two-dimensional geometries in settings in which the flow is self-similar. Different flow regimes arise, depending on the values of four key dimensionless parameters. As the viscosity ratio varies, the behaviour of the intruding layer ranges from that of a thin coating film, which exerts negligible traction on the underlying layer, to a very viscous gravity current spreading over a low-viscosity, near-rigid layer. As the density difference between the two layers approaches zero, the nose of the intruding layer steepens, approaching a shock front in the equal-density limit. We characterise a frontal stress singularity, which forms near the nose of the intruding layer, by performing an asymptotic analysis in a small neighbourhood of the front. We find from our asymptotic analysis that unlike single-layer viscous gravity currents, which exhibit a cube-root frontal singularity, the nose of a viscous gravity current propagating over another viscous fluid instead exhibits a square-root singularity, to leading order. We also find that large differences in the densities between the two fluids give rise to flows similar to that of thin films of a single viscous fluid spreading over a rigid, yet mobile, substrate.