Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-24T12:07:23.535Z Has data issue: false hasContentIssue false

Bounding heat transport in supergravitational turbulent thermal convection

Published online by Cambridge University Press:  19 December 2024

Zijing Ding*
Affiliation:
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
*
Email address for correspondence: [email protected]

Abstract

This paper derives the upper bound on heat transport in supergravitational turbulent thermal convection analytically and numerically. Using a piecewise background profile, the functional inequality analysis delivers a suboptimal bound $Nu\lesssim -({3\sqrt {3}}/{2})({\eta \ln (\eta )}/({1-\eta ^2}))\,Ra^{1/2}$ as $Ra\rightarrow \infty$, where $Nu$ is the Nusselt number, $\eta$ is the radius ratio of the inner cylinder to the outer cylinder ($0<\eta <1$), and $Ra$ is the Rayleigh number. A variational problem yielded from Doering–Constantin–Hopf formalism is solved asymptotically and numerically, which delivers a better upper bound than the piecewise background profile. The asymptotic analysis and numerical data indicate that the current best bound is given by $Nu\leqslant -0.106({\eta \ln (\eta )}/({(1-\eta )(1+\sqrt {\eta })^2}))\,Ra^{1/2}$. Both analytical and numerical results demonstrate that the upper bound can be significantly reduced by the curvature effect. Unlike the traditional Rayleigh–Bénard turbulence, in which the optimal perturbation yielded from the variational problem is always two-dimensional, the present study shows that three-dimensional perturbations, annular perturbations and axisymmetric perturbations can be induced by the curvature effect simultaneously. However, we show that the bound yielded from the three-dimensional variational problem is very close to the axisymmetric situation as $\eta$ increases and $Ra$ increases.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Bouillaut, V., Lepot, S., Aumaître, S. & Gallet, B. 2019 Transition to the ultimate regime in a radiatively driven convection experiment. J. Fluid Mech. 861, R5.CrossRefGoogle Scholar
Busse, F. 1969 On Howard's upper bound for heat transport by turbulent convection. J. Fluid Mech. 37, 457477.CrossRefGoogle Scholar
Chernyshenko, S. 2022 Relationship between the methods of bounding time averages. Phil. Trans. R. Soc. Lond. A 380, 20210044.Google ScholarPubMed
Chernyshenko, S., Goulart, P., Huang, D. & Papachristodoulou, A. 2014 Polynomial sum of squares in fluid dynamics: a review with a look ahead. Phil. Trans. R. Soc. Lond. B 372, 20130350.Google ScholarPubMed
Choffrut, A., Nobili, C. & Otto, F. 2016 Upper bounds on Nusselt number at finite Prandtl number. J. Differ. Equ. 260, 38603880.CrossRefGoogle Scholar
Ding, Z. & Kerswell, R.R. 2020 Exhausting the background approach for bounding the heat transport in Rayleigh–Bénard convection. J. Fluid Mech. 889, A33.CrossRefGoogle Scholar
Ding, Z. & Wen, B. 2020 A note on upper bound for heat transport in two-dimensional Rayleigh–Bénard convection. Intl Commun. Heat Mass Transfer 117, 104785.CrossRefGoogle Scholar
Doering, C. & Constantin, P. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53, 5957.CrossRefGoogle ScholarPubMed
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55, 603638.CrossRefGoogle Scholar
Fantuzzi, G., Arslan, A. & Wynn, A. 2022 The background method: theory and computations. Phil. Trans. R. Soc. Lond. A 380, 20210038.Google ScholarPubMed
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.CrossRefGoogle Scholar
Howard, L. 1963 Heat transport by turbulent convection. J. Fluid Mech. 17, 405.CrossRefGoogle Scholar
Ierley, G.R., Plasting, S. & Kerswell, R.R. 2006 Infinite-Prandtl-number convection. Part 2. A singular limit of upper bound theory. J. Fluid Mech. 560, 159227.CrossRefGoogle Scholar
Iyer, K.P., Scheel, J.D., Schumacher, J. & Sreenivasan, K.R. 2020 Classical $1/3$ scaling of convection holds up to $Ra=10^{15}$. Proc. Natl Acad. Sci. USA 117, 75947598.CrossRefGoogle ScholarPubMed
Jiang, H., Wang, D., Liu, S. & Sun, C. 2022 Experimental evidence for the existence of the ultimate regime in rapidly rotating turbulent thermal convection. Phys. Rev. Lett. 129, 204502.CrossRefGoogle ScholarPubMed
Jiang, H., Zhu, X., Wang, D., Huisman, S. & Sun, C. 2020 Supergravitational turbulent thermal convection. Sci. Adv. 6, eabb8676.CrossRefGoogle ScholarPubMed
Kraichnan, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
Kumar, A. 2022 Geometrical dependence of optimal bounds in Taylor–Couette flow. J. Fluid Mech. 948, A11.CrossRefGoogle Scholar
Lindborg, E. 2023 Scaling in Rayleigh–Bénard convection. J. Fluid Mech. 956, A34.CrossRefGoogle Scholar
Lohse, D. & Xia, K.Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Malkus, M. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196.Google Scholar
Otto, F. & Seis, C. 2011 Rayleigh–Bénard convection: improved bounds on the Nusselt number. J. Math. Phys. 52, 083702.CrossRefGoogle Scholar
Plasting, S. & Ierley, G.R. 2005 Estimates of heat transport in infinite Prandtl number convection. Part 1. Conservative bounds. J. Fluid Mech. 542, 343363.CrossRefGoogle Scholar
Plasting, S. & Kerswell, R.R. 2003 Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse's problem and the Constantin–Doering–Hopf problem with one-dimensional background field. J. Fluid Mech. 477, 363379.CrossRefGoogle Scholar
Plasting, S. & Kerswell, R.R. 2005 A friction factor bound for transitional pipe flow. Phys. Fluids 17, 011706.CrossRefGoogle Scholar
Rosa, R. & Temam, R. 2022 Optimal minimax bounds for time and ensemble averages for the incompressible Navier–Stokes equations. Pure Appl. Funct. Anal. 7 (1), 327355.Google Scholar
Seis, C. 2015 Scaling bounds on dissipation in turbulent flows. J. Fluid Mech. 777, 591603.CrossRefGoogle Scholar
Urban, P., Musilová, V. & Skrbek, L. 2011 Efficiency of heat transfer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 107, 014302.CrossRefGoogle ScholarPubMed
Wang, D., Jiang, H., Liu, S., Zhu, X. & Sun, C. 2022 Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection. J. Fluid Mech. 930, A19.CrossRefGoogle Scholar
Wen, B., Chini, G., Kerswell, R. & Doering, C. 2015 Time-stepping approach for solving upper-bound problems: application to two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 92, 043012.CrossRefGoogle ScholarPubMed
Whitehead, J. & Doering, C. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106, 244501.CrossRefGoogle ScholarPubMed
Zhong, J., Wang, D. & Sun, C. 2023 From sheared annular centrifugal Rayleigh–Bénard convection to radially heated Taylor–Couette flow: exploring the impact of buoyancy and shear on heat transfer and flow structure. J. Fluid Mech. 972, A29.CrossRefGoogle Scholar
Zhu, X., Mathai, V., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2018 Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120, 144502.CrossRefGoogle Scholar