We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The simplification of collision operators is necessary for quasilinear turbulence modelling used with integrated modelling frameworks, such as the gyrokinetic code QuaLiKiz. The treatment of collisions greatly impacts the accuracy of trapped electron mode (TEM) modelling, which is necessary to predict the electron heat flux and the balance between inward and outward particle fluxes. In particular, accurate particle flux predictions are necessary to successfully model density peaking in the tokamak core. We explored two ways of improving collisional TEM model reduction for tokamak core plasmas. First, we carried out linear GENE simulations to study the complex interplay between collisions and trapped electrons. We then used these simulations to define an effective trapped fraction to characterize the collisional TEM based on two key parameters, the local inverse-aspect ratio $\epsilon$ and the collisionality $\nu ^\ast$. One aspect missing from analytical TEM research is that the collisional frequency and the bounce-transit frequency are both velocity dependent; this effective trapped fraction takes both into account. In doing so, we determined that two parameters are not enough to model the collisional TEM, as an additional third free parameter was necessary. We determined that this model, as currently formulated, is not suitable for integrated modelling purposes. Second, we directly improved QuaLiKiz's Krook operator, which relies on two free parameters. We determined that these parameters required adjustments against higher-fidelity collisional models. In order to improve density profile predictions when paired with integrated models, we refined the Krook operator by using GENE simulations as a higher-fidelity point of comparison. We then demonstrate strong improvement of density peaking predictions of QuaLiKiz within the integrated modelling framework JETTO.
Stimulated Raman scattering is a third-order nonlinear optical effect that is not only effective for wavelength converting laser output, but also for single longitudinal-mode output due to the absence of spatial hole burning. Diamond is a prominent Raman-active medium that has significant potential for linewidth narrowing and wavelength converting lasers at high power levels due to its high thermal conductivity, long Raman frequency shift and wide spectral transmission range. In this work we utilize diamond in a resonantly mode-matched external cavity to achieve cascaded Raman conversion of a 1064 nm laser. By fine-tuning the length of this external cavity, we can obtain narrow linewidth emission at 1240 and 1485 nm. When operating at maximum power, the measured linewidths were more than twofold narrower than the linewidth of the fundamental field. In addition, the noise levels of the Stokes fields are lower than that of the fundamental field throughout the entire noise frequency range, and the intrinsic linewidth of the second Stokes field, which is expressed at the hertz level (~3.6 Hz), is decreased by approximately three orders of magnitude compared to that of the pump. This work represents the first measurement and analysis of the linewidth and noise characteristics of cascaded diamond Raman lasers and, significantly, offers a new means by which high-power, narrow linewidth laser output can be produced from wavelength-converted laser systems.
The eddy-viscosity model, as initially used to model the mean Reynolds stress, has been widely used in the linear analysis of turbulence recently by direct extension. In this study, the mechanism of the eddy viscosity in improving the prediction of fluctuation structures with linear analysis is clarified by investigating the statistical properties of forcing, eddy-viscosity term and their correlations. From the direct numerical simulation (DNS) results of turbulent channel flows with $Re_{\tau }=186$–$2003$, the spatial correlation of forcing is partially cancelled due to its interaction with eddy-viscosity terms. The stochastic forcing after excluding the eddy-viscosity term is nearly uncorrelated spatially, which better matches the condition where the resolvent modes are consistent with the spectral proper orthogonal decomposition (SPOD) modes from DNS. With the above findings, an optimisation framework is developed by minimising the spatial correlations of the stochastic forcing. The optimised eddy-viscosity profiles nearly overlap with the mean-quantity-based model in the near-wall region, but have different maximum values. Compared with the mean-quantity-based model, the optimised results enhance the consistency between the resolvent and DNS results significantly. Based on the optimised results, a new modelling framework is further abstracted, leaving only one to-be-modelled parameter of the maximum value of the eddy-viscosity profile. This parameter follows distinctive rules with spanwise flow scales, based on which a simplified predictive model is constructed. The resolvent modes predicted by the new model exhibit high consistency with SPOD modes, which are essentially comparable to the optimised results for wide ranges of streamwise and spanwise scales.
The presence of dispersed-phase droplets can result in a notable increase in a system's drag. However, our understanding of the mechanism underlying this phenomenon remains limited. In this study, we use three-dimensional direct numerical simulations with a modified multi-marker volume-of-fluid method to investigate liquid–liquid two-phase turbulence in a Taylor–Couette geometry. The dispersed phase has the same density and viscosity as the continuous phase. The Reynolds number $Re\equiv r_i\omega _i d/\nu$ is fixed at 5200, the volume fraction of the dispersed phase is up to $40\,\%$, and the Weber number $We\equiv \rho u^2_\tau d/\sigma$ is approximately 8. It is found that the increase in the system's drag originates from the contribution of interfacial tension. Specifically, droplets experience significant deformation and stretching in the streamwise direction due to shear near the inner cylinder. Consequently, the rear end of the droplets lags behind the fore head. This causes opposing interfacial tension effects on the fore head and rear end of the droplets. For the fore head of the droplets, the effect of interfacial tension appears to act against the flow direction. For the rear end, the effect appears to act in the flow direction. The increase in the system's drag is attributed primarily to the effect of interfacial tension on the fore head of the droplets which leads to the hindering effect of the droplets on the surrounding continuous phase. This hindering effect disrupts the formation of high-speed streaks, favouring the formation of low-speed ones, which are generally associated with higher viscous stress and drag of the system. This study provides new insights into the mechanism of drag enhancement reported in our previous experiments.
A scheme for generating high-flux angularly uniform proton beams with high laser-to-proton energy conversion efficiency is proposed. Three laser beams are focused on a microwire array attached to a solid-density hemispheric target. The laser-driven hot electrons from the front of the microwire hemisphere generate a hot-electron sheath in the hollow behind it, so that the protons on its back are accelerated by target normal sheath acceleration. The accelerated protons are of high flux, as well as angularly and energetically uniform. The scheme should be useful for applications involving warm dense matter, such as isochoric heating and modification of materials, as well as for proton therapy and inertial confinement fusion.
In this paper, aerobreakup in the stagnation region of high-Mach-number flow over a bluff body is studied with experiments and computations. Water drops of diameter 0.51–2.30 mm were acoustically levitated at sea level along the flight path of a rectangular $100\ {\rm mm} \times 150\ {\rm mm}$ rail-gun launched projectile. This enabled the study of aerobreakup at high Mach (3.03–5.12), post-shock Mach (1.5–1.9), Weber $(5 \times 10^4\unicode{x2013}4 \times 10^5)$ and Reynolds $(6 \times 10^4\unicode{x2013}3 \times 10^5)$ numbers. High-speed backlit shadowgraphy is used to record the flow structure. Computations are made for two cases, and it was found that the drop behaviour is not dominated by viscous or surface-tension effects and can be adequately captured by treating the gas as calorically perfect with the ratio of specific heats set to 1.3 to account for thermochemical effects. To assess drop surface stability at early breakup times, results from Newton's inclination method are used to determine the flow along the drop surface and input to a linear-stability analysis; from this, it was found that viscosity and surface tension can be neglected. Moreover, the acceleration term dominates the shear term at the stagnation point, a point accentuated as a drop flattens; this relation inverts closer to the drop equator. Linear-stability analysis was insufficient for modelling late-stage aerobreakup because the predicted wavelengths were too small and the expected aerobreakup times were non-physically short. To address this discrepancy, a nonlinear instability model with constant-rate growth is used that treats the accelerated drop surface as analogous to bubbles rising through a liquid; agreement with computations is good.
Turbulent mixing is a pivotal phenomenon in fusion research with profound implications for energy gain. A Reynolds-averaged Navier–Stokes model capable of predicting realistic mixing transition processes is of significant importance for fusion applications, yet such a model remains elusive. This work addresses the limitations of prevalent global transition criteria, proposing a new idea to quantify local transition characteristics based on the mixing state, recognizing its direct relevance to fusion reaction rates. We delve into the description and analysis of the spatiotemporal evolution of the mixing state and its interplay with the transition process. Then, a local transition indicator is developed and compared with conventional global criteria using the large-eddy simulation (LES) of Rayleigh–Taylor turbulent mixing. Building upon this foundation, we introduce a novel eddy viscosity model based on the local transition indicator. A posterior assessment using LES data validates that it significantly outperforms standard gradient transport models during the transition stage. Consequently, we integrate this new eddy viscosity model with the Besnard–Harlow–Rauenzahn model to construct a comprehensive transition model, which demonstrates reasonably good performance in comparison with LES results. This work paves the way for future research in developing advanced modelling strategies that can effectively address the complexities of transitional flows in fusion engineering applications.
Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind totargets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.
Developing large-eddy simulation (LES) wall models for separated flows is challenging. We propose to leverage the significance of separated flow data, for which existing theories are not applicable, and the existing knowledge of wall-bounded flows (such as the law of the wall) along with embedded learning to address this issue. The proposed so-called features-embedded-learning (FEL) wall model comprises two submodels: one for predicting the wall shear stress and another for calculating the eddy viscosity at the first off-wall grid nodes. We train the former using the wall-resolved LES (WRLES) data of the periodic hill flow and the law of the wall. For the latter, we propose a modified mixing length model, with the model coefficient trained using the ensemble Kalman method. The proposed FEL model is assessed using the separated flows with different flow configurations, grid resolutions and Reynolds numbers. Overall good a posteriori performance is observed for predicting the statistics of the recirculation bubble, wall stresses and turbulence characteristics. The statistics of the modelled subgrid-scale (SGS) stresses at the first off-wall grids are compared with those calculated using the WRLES data. The comparison shows that the amplitude and distribution of the SGS stresses and energy transfer obtained using the proposed model agree better with the reference data when compared with the conventional SGS model.
Convective flows near a cylindrical solid inclusion in a fluid-saturated porous medium heated from above are studied using the Darcy–Boussinesq equations. The impermeability condition is imposed on the inclusion surface. Two-dimensional convective flows uniform in the direction of the cylinder axis are considered. An Oseen-like approximation is implemented, however, different from the conventional Oseen approximation, quasilinearization is applied to the nonlinear terms in the energy equation and not in the momentum equation. It is shown that, when the thermal conductivity of the inclusion is higher than that of the fluid, the convective flow at a distance from the inclusion larger than the inclusion size takes the form of horizontal vortices directed away from the inclusion. In the case of low thermal conductivity of the inclusion, the direction of convective circulation is opposite: in the horizontal plane passing through the cylinder axis, the fluid is leaking to the inclusion.
There is renewed interest in direct-drive inertial confinement fusion, following the milestone December 2022 3.15 MJ ignition result on the National Ignition Facility. A key obstacle is the control of the two-plasmon decay instability. Here, recent advances in inhomogeneous turbulence theory are applied to the broadband parametric instability problem for the first time. A novel dispersion relation is derived for the two-plasmon decay in a uniform plasma valid under broad-bandwidth laser fields with arbitrary power spectra. The effects of temporal incoherence on the instability are then studied. In the limit of large bandwidth, the well-known scaling relations for the growth rate are recovered, but it is shown that the result is more sensitive to the spectral shape of the laser pulse rather than to its coherence time. The range of wavenumbers of the excited plasma waves is shown to be substantially broadened, suggesting that the absolute instability is favoured in regions further away from the quarter critical density. The intermediate-bandwidth regime is explored numerically – the growth rate is reduced to half its monochromatic value for laser intensities of $10^{15} \ \text {W}\ \text {cm}^{-2}$ and relatively modest bandwidths of $5 \ \text {THz}$. The instability-quenching properties of a spectrum of discrete lines spread over some bandwidth have also been studied. The reduction in the growth rate is found to be somewhat lower compared with the continuous case but is still significant, despite the fact that, formally, the coherence time of such a laser pulse is infinite.
An analytical expression for the focal intensity of a laser pulse was obtained for an asymmetric out-of-plane compressor with gratings of arbitrary surface shape. The focal intensity is most strongly affected by the linear angular chirp caused by the spatial shift of different frequencies on the second and third gratings. The chirp can be eliminated by simply rotating the fourth grating by an optimal angle, which significantly reduces the requirements for the grating quality. It is shown that the decrease in the focal intensity depends on the product of the grating surface root mean square and pulse spectrum bandwidth. With low-quality gratings, spectrum narrowing would not reduce focal intensity; contrariwise, it may even slightly increase it.
An optical spectrometer system based on 60 channels of fibers has been designed and employed to diagnose light emissions from laser–plasma interactions. The 60 fiber collectors cover an integrated solid angle of $\pi$, enabling the measurement of global energy losses in a symmetrical configuration. A detecting spectral range from ultraviolet to near-infrared, with angular distribution, allows for the understanding of the physical mechanisms involving various plasma modes. Experimental measurements of scattered lights from a conical implosion driven by high-energy nanosecond laser beams at the Shenguang-II Upgrade facility have been demonstrated, serving as reliable diagnostics to characterize laser absorption and energy losses from laser–plasma instabilities. This compact diagnostic system can provide comprehensive insights into laser energy coupling in direct-drive inertial confinement fusion research, which are essential for studying the driving asymmetry and improving the implosion efficiencies.
Optimising stellarators for quasisymmetry leads to strongly reduced collisional transport and energetic particle losses compared with unoptimised configurations. Although stellarators with precise quasisymmetry have been obtained in the past, it remains unclear how broad the parameter space is where good quasisymmetry may be achieved. We study the range of aspect ratios and rotational transform values for which stellarators with excellent quasisymmetry on the boundary can be obtained. A large number of Fourier harmonics is included in the boundary representation, which is made computationally tractable by the use of adjoint methods to enable fast gradient-based optimisation and by the direct optimisation of vacuum magnetic fields, which converge more robustly compared with solutions from magnetohydrostatics. Several novel configurations are presented, including stellarators with record levels of quasisymmetry on a surface, three field period quasiaxisymmetric stellarators with substantial magnetic shear, and compact quasisymmetric stellarators at low aspect ratios similar to tokamaks.
We present a framework for analysing plasma flow in a rotating mirror. By making a series of physical assumptions, we reduce the magnetohydrodynamic (MHD) equations in a three-dimensional cylindrical system to a one-dimensional system in a shallow, cuboidal channel within a transverse magnetic field, similar to the Hartmann flow in ducts. We then solve the system both numerically and analytically for a range of values of the Hartmann number and calculate the dependence of the plasma flow speed on the thickness of the insulating end cap. We observe that the mean flow overshoots and decelerates before achieving a steady-state value, a phenomenon that the analytical model cannot capture. This overshoot is directly proportional to the thickness of the insulating end cap and the external electric field, with a weak dependence on the external magnetic field. Our simplified model can act as a benchmark for future simulations of the supersonic mirror device CMFX (centrifugal magnetic fusion experiment), which will employ more sophisticated physics and realistic magnetic field geometries.
We study the first contact of an emulsion drop impacting on a smooth solid surface. The lubricating air layer causes rapid deceleration of the bottom tip of the drop as it approaches first contact, causing a dimple in the drop surface. When the dispersed emulsion droplets are of higher density than the drop's continuous phase, the rapid deceleration (${\sim }10^5$ m s$^{-2}$) induces the formation of narrow spikes extruding out of the free surface. These spikes form when the impact Weber number exceeds a critical value ${\simeq }10$. Time-resolved interferometric imaging, at rates up to 7 million frames per second, shows the emergence and shape of these spikes leading to the local contacts with the solid. We characterize the tip curvature and capillary pressure affecting their dynamics as they emerge and can touch the substrate before the main outer ring of contact.
We study the tearing instability of a current sheet in a relativistic pair plasma with a power-law distribution function. We first estimate the growth rate analytically and then confirm the analytical results by solving numerically the dispersion equation, taking into account all exact particle trajectories within the reconnecting layer. We found that the instability is suppressed when the particle spectrum becomes harder.