We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter provides an extensive discussion of Grand Unified Theories (GUTs) and related subjects. It begins with the SU(5) GUT, its fermion multiplets, and the resulting transitions between leptons and quarks, which enable in particular proton decay. In this context, we discuss the baryon asymmetry in the Universe, as well as possible topological defects dating back to the early Universe, according to the Kibble mechanism, such as domain walls, cosmic strings, or magnetic monopoles. That takes us to a review of Dirac and ‘t Hooft–Polaykov monopoles, Julia–Zee dyons, and the effects named after Callan–Rubakov and Witten. Next we discuss fermion masses in the framework of the GUTs with the gauge groups SU(5) and Spin(10). Then we consider small unified theories (without QCD) with a variety of gauge groups. Finally, we summarize the status and prospects of the GUT approach.
First, non-Abelian gauge fields are quantized canonically. The Faddeev–Popov ghost fields implement gauge fixing, then we review the BRST symmetry. Next, we proceed to the lattice regularization and then from Abelian to non-Abelian gauge fields. We stress that the compact lattice functional integral formulation does not require gauge fixing.
We construct mass terms for the Standard Model fermions of the first generation. This includes the neutrino, where we invoke either a dimension-5 term or we add a right-handed neutrino field. We reconsider the CP symmetry, the fate of baryon and lepton numbers, and the quantization of the electric charge. The question of the mass hierarchy takes us to the seesaw mass-by-mixing mechanism. As a peculiarity, we finally revisit such properties in the scenario without colors (Nc=1), which allows leptons and baryons to mix.
Chiral perturbation theory is the systematic low-energy effective theory of QCD, in terms of low-energy parameters and pseudo-Nambu–Goldstone boson fields representing pions, kaons, and the η. We discuss their masses in leading order, and the corresponding electromagnetic corrections, where we arrive at Dashen’s theorem. We show how this low-energy scheme even encompasses nucleons, and how QCD provides corrections to the weak gauge boson masses. In that context, we comment on a technicolor extension and on the hypothesis of minimal flavor violation, which is described by spurions.
Tightly focused proton beams generated from helical coil targets have been shown to be highly collimated across small distances, and display characteristic spectral bunching. We show, for the first time, proton spectra from such targets at high resolution via a Thomson parabola spectrometer. The proton spectral peaks reach energies above 50 MeV, with cutoffs approaching 70 MeV and particle numbers greater than 10${}^{10}$. The spectral bunch width has also been measured as low as approximately 8.5 MeV (17% energy spread). The proton beam pointing and divergence measured at metre-scale distances are found to be stable with the average pointing stability below 10 mrad, and average half-angle beam divergences of approximately 6 mrad. Evidence of the influence of the final turn of the coil on beam pointing over long distances is also presented, corroborated by particle tracing simulations, indicating the scope for further improvement and control of the beam pointing with modifying target parameters.
We outline the main concepts of the Standard Model, illustratively describing its central features and some open questions, as a preparation for the following chapters.
This chapter introduces the first fermion generation. We begin with the electron and the left-handed neutrino, their CP invariance as well as anomalies in triangle diagrams and Witten’s global SU(2) anomaly. They are both canceled by adding up and down quarks. We discuss the constraints that anomaly cancelation imposes on the electric charges of the fermions. Finally we also add a right-handed neutrino, extend the anomaly discussion to the lepton and baryon numbers, and further extend the model by proceeding to technicolor.
Dirac, Weyl, and Majorana fermions are now formulated in terms of functional integrals of Grassmann fields in Euclidean space. We discuss continuous and discrete symmetries, the spin-statistics theorem as well as the transfer matrix on the lattice. Regarding the transformations C, P, and T, we highlight a little known subtlety of the parity behavior of Majorana fermions.
Integrative modeling enables structure determination for large macromolecular assemblies by combining data from multiple experiments with theoretical and computational predictions. Recent advancements in AI-based structure prediction and cryo electron-microscopy have sparked renewed enthusiasm for integrative modeling; structures from AI-based methods can be integrated with in situ maps to characterize large assemblies. This approach previously allowed us and others to determine the architectures of diverse macromolecular assemblies, such as nuclear pore complexes, chromatin remodelers, and cell–cell junctions. Experimental data spanning several scales was used in these studies, ranging from high-resolution data, such as X-ray crystallography and AlphaFold structure, to low-resolution data, such as cryo-electron tomography maps and data from co-immunoprecipitation experiments. Two recurrent modeling challenges emerged across a range of studies. First, these assemblies contained significant fractions of disordered regions, necessitating the development of new methods for modeling disordered regions in the context of ordered regions. Second, methods needed to be developed to utilize the information from cryo-electron tomography, a timely challenge as structural biology is increasingly moving towards in situ characterization. Here, we recapitulate recent developments in the modeling of disordered proteins and the analysis of cryo-electron tomography data and highlight other opportunities for method development in the context of integrative modeling.
Synthetic biology aims to create a viable synthetic cell. However, to achieve this goal, it is essential first to gain a profound understanding of the cellular systems used to build that cell, how to reconstitute those systems in the compartments, and how to track their function. Transcription and translation are two vital cellular systems responsible for the production of RNA and, consequently, proteins, without which the cell would not be able to maintain itself or fulfill its functions. This review discusses in detail how the Protein synthesis Using Recombinant Element (PURE) system and cell lysate are used to reconstitute transcription–translation in vitro. Furthermore, it examines how these systems can be encapsulated in GUVs using the existing methods. It also assesses approaches available to image transcription and translation with a diverse arsenal of fluorescence microscopy techniques and a broad collection of probes developed in recent decades. Finally, it highlights solutions for the challenge ahead, namely the decoupling of the two systems in PURE, and discusses the prospects of synthetic biology in the modern world.
Single-stranded nucleic acid (ssNA) binding proteins must both stably protect ssNA transiently exposed during replication and other NA transactions, and also rapidly reorganize and dissociate to allow further NA processing. How these seemingly opposing functions can coexist has been recently elucidated by optical tweezers (OT) experiments that isolate and manipulate single long ssNA molecules to measure conformation in real time. The effective length of an ssNA substrate held at fixed tension is altered upon protein binding, enabling quantification of both the structure and kinetics of protein–NA interactions. When proteins exhibit multiple binding states, however, OT measurements may produce difficult to analyze signals including non-monotonic response to free protein concentration and convolution of multiple fundamental rates. In this review we compare single-molecule experiments with three proteins of vastly different structure and origin that exhibit similar ssNA interactions. These results are consistent with a general model in which protein oligomers containing multiple binding interfaces switch conformations to adjust protein:NA stoichiometry. These characteristics allow a finite number of proteins to protect long ssNA regions by maximizing protein–ssNA contacts while also providing a pathway with reduced energetic barriers to reorganization and eventual protein displacement when these ssNA regions are diminished.
DNA unzipping by nanopore translocation has implications in diverse contexts, from polymer physics to single-molecule manipulation to DNA–enzyme interactions in biological systems. Here we use molecular dynamics simulations and a coarse-grained model of DNA to address the nanopore unzipping of DNA filaments that are knotted. This previously unaddressed problem is motivated by the fact that DNA knots inevitably occur in isolated equilibrated filaments and in vivo. We study how different types of tight knots in the DNA segment just outside the pore impact unzipping at different driving forces. We establish three main results. First, knots do not significantly affect the unzipping process at low forces. However, knotted DNAs unzip more slowly and heterogeneously than unknotted ones at high forces. Finally, we observe that the microscopic origin of the hindrance typically involves two concurrent causes: the topological friction of the DNA chain sliding along its knotted contour and the additional friction originating from the entanglement with the newly unzipped DNA. The results reveal a previously unsuspected complexity of the interplay of DNA topology and unzipping, which should be relevant for interpreting nanopore-based single-molecule unzipping experiments and improving the modeling of DNA transactions in vivo.
We present a re-discovery of G278.94+1.35a as possibly one of the largest known Galactic supernova remnants (SNRs) – that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new Evolutionary Map of the Universe (EMU) and GaLactic and Extragalactic All-sky MWA (GLEAM) radio continuum images at an angular size of $3{{{{.\!^\circ}}}}33\times3{{{{.\!^\circ}}}}23$, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157$\times$152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of $\sim$1 kpc, implying its diameter is 58$\times$56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula.
The Gaia optical astrometric mission has measured the precise positions of millions of objects in the sky, including extragalactic sources also observed by Very Long Baseline Interferometry (VLBI). In the recent Gaia EDR3 release, an effect of negative parallax with a magnitude of approximately $-17$$\mu$as was reported, presumably due to technical reasons related to the relativistic delay model. A recent analysis of a 30-yr set of geodetic VLBI data (1993–2023) revealed a similar negative parallax with an amplitude of $-15.8 \pm 0.5$$\mu$as. Since both astrometric techniques, optical and radio, provide consistent estimates of this negative parallax, it is necessary to investigate the potential origin of this effect.
We developed the extended group relativistic delay model to incorporate the additional parallactic effect for radio sources at distances less than 1 Mpc and found that the apparent annual signal might appear due the non-orthogonality of the fundamental axes, which are defined by the positions of the reference radio sources themselves. Unlike the conventional parallactic ellipse, the apparent annual effect in this case appears as a circular motion for all objects independently of their ecliptic latitude. The measured amplitude of this circular effect is within a range of 10–15 $\mu$as that is consistent with the ICRF3 stability of the fundamental axis. This annual circular effect could also arise if a Gödel-type cosmological metric were applied, suggesting that, in the future, this phenomenon could be used to indicate global cosmic rotation.
In this study, the results obtained using GOES satellite X-ray data and MWO and WSO measurements of the solar magnetic field between 1976 and 2022 are compared and discussed. By analysing GOES satellite X-ray data in 47 different time periods of one month long, 7 500 solar flares are obtained, the flare equivalent duration distributions against the total duration of the flare are statistically modelled, and then their variation via time is examined. The variations of the model parameters such as the Plateau, which is considered as an indicator of the stellar saturation level in an observation season, and the flare timescales via time are examined. We noticed that the variation found in the solar magnetic field and the variation determined in the flare saturation levels are very similar. As a result, it is well known that the solar magnetic dipole moment measured from the solar poles steadily decreased from 1976 to 2022. We revealed that the solar X-ray flare energies are also generally decreasing in the same trend. This decrease is also evident in flare timescales, indicating that the geometry of solar magnetic loops is getting smaller over time.
Splashes from impacts of drops on liquid pools are ubiquitous and generate secondary droplets important for a range of applications in healthcare, agriculture and industry. The physics of splash continues to comprise central unresolved questions. Combining experiments and theory, here we study the sequence of topological changes from drop impact on a deep, inviscid liquid pool, with a focus on the regime of crown splash with developing air cavity below the interface and crown sheet above it. We develop coupled evolution equations for the cavity–crown system, leveraging asymptotic theory for the cavity and conservation laws for the crown. Using the key coupling of sheet and cavity, we derive similarity solutions for the sheet velocity and thickness profiles, and asymptotic prediction of the crown height evolution. Unlike the cavity whose expansion is opposed by gravitational effects, the axial crown rise is mostly opposed by surface tension effects. Moreover, both the maximum crown height and the time of its occurrence scale as ${\textit {We}}^{5/7}$. We find our analytical results to be in good agreement with our experimental measurements. The cavity–crown coupling achieved enables us to obtain explicit estimates of the crown splash spatio-temporal unsteady dynamics, paving the way to deciphering ultimate splash fragmentation.