We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The astrophysics of Active Galactic Nuclei (AGN) is one of the long outstanding issues in searches among the scientific communities raised with diverse perspectives like nebula, quasars, etc some decades ago. Currently, this exotic system is at least understood as the center of an active galaxy. Thus, the consensus of this recent theory has opened up a number of research issues for the progress of astrophysical science including how the hosting galaxy evolves with the AGN, how matter and energy flow towards and outwards, etc. Moreover, most of the AGNs possess Supermassive Black Holes (SMBHs) and accrete matter at a very high rate as current observations report. Consequently, both observations of electromagnetic (EM) spectrum and Gravity Waves (GWs) will considered to provide complementary information about the AGNs and the roles in their environments including black holes in their centers, outflow and inflow of matter-energy. Interested with this background rationale, we study the mechanisms of AGN interaction with its environment and flow of relativistic jets where General Relativistic (GR) Magneto-Hydrodynamic (MHD) equations are being considered. The solutions of the field equations are treated with a metric that involves charged systems for the possible relativistic jets including accretions. Then, numerical data is being generated using the latest version Mathematic software. Finally, the theoretical data is being compared with that of observation for validation of the model.
3C 294 is a powerful FR II type radio galaxy at z = 1.786. Due to its proximity of a bright star, it has been subject to several adaptive optics supported imaging studies. The system shows a clumpy structure indicative of a merging system. There is even tentative evidence that 3C 294 hosts a dual AGN. In order to distinguish between the various scenarios for 3C 294 we performed deep high-resolution adaptive optics imaging and optical spectroscopy of 3C 294 with the Large Binocular Telescope. We resolve the 3C 294 system in three distinct components separated by a few tenths of an arcsecond. One of them is compact, the other two are extended. The nature of the latter is unclear. They could be a single galaxy with an internal dust absorption feature, a galaxy merger, or two galaxies at different redshifts. We can now uniquely associate the radio source of 3c 294 with one of the extended components. Based on our spectroscopy, we determine a slightly different redshift of z = 1.784. We find, however, in addition a single emission line at a wavelength of 6745 AA, which might be identified with Lyα at z = 4.56. It thus appears unlikely that 3C294 hosts a dual AGN; it might rather be a pair of AGNs with very small projected separation.
The angular resolution and the sensitivity of a parabolic dish telescope increase with the diameter of its aperture at a given frequency. This implies that as the telescope gets larger, its resolution becomes better. However, constructing telescopes of ever increasing size is prohibitive for both technical and financial reasons. This problem is solved by using an interferometer which consists of two or more separate telescopes that combine their signals offering a resolution equivalent to the largest separation distance between the telescopes. In this work, the electric field variations from two telescopes will be obtained. The voltage signals from the two telescopes will be coherently combined in order to derive the structure of the target source of radio emission. This combination will be done by a cross-correlator, which multiplies and averages the voltage outputs V1 and V2 of the two dishes. A major challenge to be addressed in this work is to design an instrument capable of making professional-type radio astronomy measurement in a local interference environment. In this regard, the investigative part of this work will verify whether it is possible to achieve a high sensitivity enough to detect some cosmic sources where the presence of man-made interference and cost adversely influences the system. The design of an interferometer will be presented and implemented. It may also serve as a demonstrator for engineering students to gain a working knowledge of radio interferometry.
We revisit the problem of the existence of KAM tori in extrasolar planetary systems. Specifically, we consider the υ Andromedæ system, by modelling it with a three-body problem. This preliminary study allows us to introduce a natural way to evaluate the robustness of the planetary orbits, which can be very easily implemented in numerical explorations. We apply our criterion to the problem of the choice of a suitable orbital configuration which exhibits strong stability properties and is compatible with the observational data that are available for the υ Andromedæ system itself.
We explore the intrinsic jet opening angle (IJOA) of blazars, from the literature, we found that the blazar number density peaks around 0.5° of IJOA and declines quickly with increasing IJOA for flat spectrum radio quasars (FSRQs), while the number density has double peaks around 0.3° and 2.0° of IJOA for BL Lacs. We assume that the black hole accretion-produced jet may have the smaller IJOA (for its larger linear scale of launch region), and the BH spin-produced jet may have the larger IJOA (for its smaller launch region), such that the FSRQs are accretion dominated for their single peaked small IJOA, while the BL Lacs are either accretion or BH spin dominated for their double peaked IJOA.
We present a sample of nearly 650 widely separated double white dwarf binaries found using Gaia DR2 astrometry. We derive preliminary total ages for each white dwarf in our sample using Gaia photometry and compare the total ages of both components of each binary in our sample. We find agreement within 3 sigma between the two ages ∼85% of the time with median age uncertainties of ∼3.5 Gyr depending on which initial-final mass relation is used. When a subsample with the most precise ages is used, the agreement within 3 sigma drops to ∼70% with median age uncertainties of 300-600 Myr.
The Laplace resonance is a configuration that involves the commensurability between the mean motions of three small bodies revolving around a massive central one. This resonance was first observed in the case of the three inner Galilean satellites, Io, Europa, and Ganymede. In this work the Laplace resonance is generalised by considering a system of three satellites orbiting a planet that are involved in mean motion resonances. These Laplace-like resonances are classified in three categories: first-order (2:1&2:1, 3:2&3:2, 2:1&3:2), second-order (3:1&3:1) and mixed-order resonances (2:1&3:1). In order to study the dynamics of the system we implement a model that includes the gravitational interaction with the central body, the mutual gravitational interactions of the satellites, the effects due to the oblateness of the central body and the secular interaction of a fourth satellite and a distant star. Along with these contributions we include the tidal interaction between the central body and the innermost satellite. We study the survival of the Laplace-like resonances and the evolution of the orbital elements of the satellites under the tidal effects. Moreover, we study the possibility of capture into resonance of the fourth satellite.
The presence of a super massive BH in almost all galaxies in the Universe is an accepted paradigm in astronomy. How these BHs form and how they co-evolve with the host galaxy is one of the most intriguing unanswered problems in modern Cosmology and of extreme relevance to understand the issue of galaxy formation. Clustering measurements can powerfully test theoretical model predictions of BH triggering scenarios and put constraints on the typical environment where AGN live in, through the connection with their host dark matter halos. In this talk, I will present some recent results on the AGN clustering dependence on host galaxy properties, such as galaxy stellar mass, star formation rate and specific BH accretion rate, based on X-ray selected Chandra COSMOS Legacy Type 2 AGN. We found no significant AGN clustering dependence on galaxy stellar mass and specif BHAR for Type 2 COSMOS AGN at mean z ∼ 1.1, with a stellar - halo mass relation flatter than predicted for non active galaxies in the Mstar range probed by our sample. We also observed a negative clustering dependence on SFR, with AGN hosting halo mass increasing with decreasing SFR. Mock catalogs of active galaxies in hosting dark matter halos with logMh[Msun] > 12.5, matched to have the same X-ray luminosity, stellar mass and BHAR of COSMOS AGN predict the observed Mstar - Mh, BHAR - Mh and SFR-Mh relations, at z ∼ 1.
The J-PAS survey will soon start observing thousands of square degrees of the Northern Sky with its unique set of 56 narrow band filters covering the entire optical wavelength range, providing, effectively, a low resolution spectra for every object detected. Active galaxies and quasars, thanks to their strong emission lines, can be easily identified and characterized with J-PAS data. A variety of studies can be performed, from IFU-like analysis of local AGN, to clustering of high-z quasars. We also expect to be able to extract intrinsic physical quasar properties from the J-PAS pseudo-spectra, including continuum slope and emission line luminosities. Here we show the first attempts of using the QSFit software package to derive the properties for 22 quasars at 0.8 < z < 2 observed by the miniJPAS survey, the first deg2 of J-PAS data obtained with an interim camera. Results are compared with the ones obtained by applying the same software to SDSS quasar spectra.
Knowing the late stages of the stellar evolution is crucial for understanding the fate of planets around subdwarfs and white dwarfs. Simulations by (Staff et al.2016) show, that exoplanets engulfed in the extending stellar envelope will quickly spiral down onto the parent star. Therefore, we do not expect to find planets on close by orbits to the subdwarfs (Blokesz et al.2019) or white dwarfs. However, the recent observation of planetary debris around WD 1145+017 white dwarf suggests, there might exists planets farther away from these stars. Using binarograms, O-C diagrams and Fourier transform for the Kepler space telescope data, we investigate a problem of missing planets around white dwarfs in binary systems, single white dwarfs and subdwarfs type B. The last ones, being the only stars which (due to the lack of hydrogen) go directly to the white dwarf cooling track after their red giant phase.
Recent evidence of super-Chandrasekhar white dwarfs (WDs), from the observations of over-luminous type Ia supernovae (SNeIa), has been a great astrophysical discovery. However, no such massive WDs have so far been observed directly as their luminosities are generally quite low. Hence it immediately raises the question of whether there is any possibility of detecting them directly. The search for super-Chandrasekhar WDs is very important as SNeIa are used as standard candles in cosmology. In this article, we show that continuous gravitational wave can allow us to detect such super-Chandrasekhar WDs directly.
The interpretation of the main sequence of quasars has become a frontier subject in the last years. This considers the effect of a highly flattened, axially symmetric geometry for the broad line region (BLR) on the parameters related to the distribution of quasars along their main sequence. We utilize the photoionization code CLOUDY to model the BLR, assuming ‘un-constant’ virial factor with a strong dependence on the viewing angle. We show the preliminary results of the analysis to highlight the co-dependence of the Eigenvector 1 parameter, RFeii on the broad Hβ FWHM (i.e. the line dispersion) and the inclination angle (θ), assuming fixed values for the Eddington ratio (Lbo1/LEdd), black hole mass (MBH) and spectral energy distribution (SED) shape. We consider four cases with changing cloud density (nH) and composition. Understanding the emitting region is crucial as this knowledge can be extended to the use of quasars as distance indicators for Cosmology.‡
We investigate the relative fraction of the emission generated by star formation and nuclear activities in 6 nearby HII galaxies selected from the first high resolution radio data release of LeMMINGS, the Legacy e-MERLIN Multi-band Imaging of Nearby Galaxies Survey. These galaxies are supposed to be powered solely by star formation according to the BPT diagram but exhibit jetted morphologies on parsec scales indicating the presence of a low luminosity AGN. We further carried out a multi-wavelength SED fiiting and analysis using the CIGALE code, estimating stellar masses and star formation rates.
Active Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.
The Lidov-Kozai (LK) resonance is one of the most widely discussed topics since the discovery of exoplanets in eccentric orbits. It constitutes a secular protection mechanism for systems with high mutual inclinations, although large variations in eccentricity and inclination are observed. This review aims to illustrate how the LK resonance influences the dynamics of the three-body problem at different scales, namely i) for two-planet extrasolar systems where the orbital variations occur in a coherent way such that the system remains stable, ii) for inclined planets in protoplanetary discs where the LK cycles are produced by the gravitational force exerted by the disc on the planet, iii) for migrating planets in binary star systems, whose dynamical evolution is strongly affected by the LK resonance even without experiencing a resonance capture, and iv) for triple-star systems for which the migration through LK cycles combined with tidal friction is a possible explanation for the short-period pile-up observed in the distribution of multiple stars.
We present a closed-form normalization method suitable for the study of the secular dynamics of small bodies inside the trajectory of Jupiter. The method is based on a convenient use of a book-keeping parameter introduced not only in the Lie series organization but also in the Poisson bracket structure employed in all perturbative steps. In particular, we show how the above scheme leads to a redefinition of the remainder of the normal form at every step of the formal solution of the homological equation. An application is given for the semi-analytical representation of the orbits of main belt asteroids.
Observations performed in the last decades have shown that supermassive black holes (SMBHs) and cosmic structures are not separate elements of the Universe. While galaxies extend on spatial scales about ten orders of magnitude larger than the horizon of SMBHs, black holes would not exist without matter feeding them, and cosmic structures would not be the same without feedback from SMBHs. Powerful winds/jets in active galactic nuclei (AGN) may be the basis of this co-evolution. Synergistic observations in the X-rays and other wavebands have been proven to be fundamental to map AGN winds from the event horizon up to galaxy scales, providing a promising avenue to study the multi-phase SMBH feeding and feedback processes. Moreover, a spatially resolved, spectroscopic analysis of AGN in clusters will allow us to probe the multiphase medium ranging from galactic up to cluster scales. Revolutionary advances are expected in the upcoming decade with new multi-wavelength observatories, ranging from radio to X-rays.
White dwarfs (WDs) in open star clusters are a highly useful ensemble of stars. While numerous researchers use open cluster WDs to study the initial-final mass relation, numerous other evolutionary studies are also enabled by this sample of stars, including searches for stochastic mass loss, studies of binary star evolution, and measurements of metallicity impacts on WD formation and evolution. However, it is crucial to use astrometric data such as proper motions to remove contaminating field WDs from open cluster samples; multi-epoch ground based imaging is needed for most open cluster WDs. Also, the strongly correlated errors in the initial mass - final mass plane must be considered; we illustrate the importance of this consideration using a large open cluster WD sample and Monte Carlo techniques.
Radio observations allow us to identify a wide range of active galactic nuclei (AGN), which play a significant role in the evolution of galaxies. Amongst AGN at low radio-luminosities is the ‘radio-quiet’ quasar (RQQ) population, but how they contribute to the total radio emission is under debate, with previous studies arguing that it is predominantly through star formation. In this talk, SVW summarised the results of recent papers on RQQs, including the use of far-infrared data to disentangle the radio emission from the AGN and that from star formation. This provides evidence that black-hole accretion, instead, dominates the radio emission in RQQs. In addition, we find that this accretion-related emission is correlated with the optical luminosity of the quasar, whilst a weaker luminosity-dependence is evident for the radio emission connected with star formation. What remains unclear is the process by which this accretion-related emission is produced. Understanding this for RQQs will then allow us to investigate how this type of AGN influences its surroundings. Such studies have important implications for modelling AGN feedback, and for determining the accretion and star-formation histories of the Universe.