Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:11:15.785Z Has data issue: false hasContentIssue false

Tracing AGN feedback, from the SMBH horizon up to cluster scales

Published online by Cambridge University Press:  29 January 2021

Francesco Tombesi*
Affiliation:
Department of Physics, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, I-00133 Rome, Italy INAF Astronomical Observatory of Rome, Via Frascati 33, 00078 Monte Porzio Catone, Italy Department of Astronomy, University of Maryland, College Park, MD 20742, USA NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations performed in the last decades have shown that supermassive black holes (SMBHs) and cosmic structures are not separate elements of the Universe. While galaxies extend on spatial scales about ten orders of magnitude larger than the horizon of SMBHs, black holes would not exist without matter feeding them, and cosmic structures would not be the same without feedback from SMBHs. Powerful winds/jets in active galactic nuclei (AGN) may be the basis of this co-evolution. Synergistic observations in the X-rays and other wavebands have been proven to be fundamental to map AGN winds from the event horizon up to galaxy scales, providing a promising avenue to study the multi-phase SMBH feeding and feedback processes. Moreover, a spatially resolved, spectroscopic analysis of AGN in clusters will allow us to probe the multiphase medium ranging from galactic up to cluster scales. Revolutionary advances are expected in the upcoming decade with new multi-wavelength observatories, ranging from radio to X-rays.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bischetti, M., Piconcelli, E., Feruglio, C., et al. 2019, A&A, 628, A118Google Scholar
Bower, R. G., Benson, A. J., & Crain, R. A. 2012, MNRAS, 422, 281610.1111/j.1365-2966.2012.20516.xCrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Faucher-Giguère, C.-A. & Quataert, E. 2012, MNRAS, 425, 60510.1111/j.1365-2966.2012.21512.xCrossRefGoogle Scholar
Feruglio, C., Fiore, F., Carniani, S., et al. 2015, A&A, 583, A99Google Scholar
Feruglio, C., Ferrara, A., Bischetti, M., et al. 2017, A&A, 608, A30Google Scholar
Gaspari, M. & Sadowski, A. 2017, ApJ, 837, 14910.3847/1538-4357/aa61a3CrossRefGoogle Scholar
Gofford, J., Reeves, J. N., Tombesi, F., et al. 2013, MNRAS, 430, 6010.1093/mnras/sts481CrossRefGoogle Scholar
Gofford, J., Reeves, J. N., McLaughlin, D. E., et al. 2015, MNRAS, 451, 416910.1093/mnras/stv1207CrossRefGoogle Scholar
Gupta, A., Mathur, S., Krongold, Y., et al. 2013, ApJ, 772, 6610.1088/0004-637X/772/1/66CrossRefGoogle Scholar
Gupta, A., Mathur, S., & Krongold, Y. 2015, ApJ, 798, 410.1088/0004-637X/798/1/4CrossRefGoogle Scholar
Häring, N. & Rix, H.-W. 2004, ApJ, 604, L8910.1086/383567CrossRefGoogle Scholar
Hopkins, P. F. & Elvis, M. 2010, MNRAS, 401, 710.1111/j.1365-2966.2009.15643.xCrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Longinotti, A. L., Krongold, Y., Guainazzi, M., et al. 2015, ApJ, 813, L3910.1088/2041-8205/813/2/L39CrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 228510.1086/300353CrossRefGoogle Scholar
Middei, R., Tombesi, F., Vagnetti, F., et al. 2020, accepted in A&A, arXiv:2001.03979Google Scholar
Mizumoto, M., Izumi, T., & Kohno, K. 2019, ApJ, 871, 15610.3847/1538-4357/aaf814CrossRefGoogle Scholar
Pounds, K. A., Lobban, A., Reeves, J. N., et al. 2016, MNRAS, 459, 438910.1093/mnras/stw933CrossRefGoogle Scholar
Reeves, J. N., Braito, V., Nardini, E., et al. 2016, ApJ, 824, 2010.3847/0004-637X/824/1/20CrossRefGoogle Scholar
Serafinelli, R., Tombesi, F., Vagnetti, F., et al. 2019, A&A, 627, A121Google Scholar
Shankar, F., Bernardi, M., Richardson, K., et al. 2019, MNRAS, 485, 127810.1093/mnras/stz376CrossRefGoogle Scholar
Smith, R. N., Tombesi, F., Veilleux, S., et al. 2019, ApJ, 887, 6910.3847/1538-4357/ab4ef8CrossRefGoogle Scholar
Sturm, E., González-Alfonso, E., Veilleux, S., et al. 2011, ApJ, 733, L1610.1088/2041-8205/733/1/L16CrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, A&A, 521, A57Google Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2011, ApJ, 742, 4410.1088/0004-637X/742/1/44CrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2012, MNRAS, 422, L110.1111/j.1745-3933.2012.01221.xCrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2013, MNRAS, 430, 110210.1093/mnras/sts692CrossRefGoogle Scholar
Tombesi, F., Tazaki, F., Mushotzky, R. F., et al. 2014, MNRAS, 443, 215410.1093/mnras/stu1297CrossRefGoogle Scholar
Tombesi, F., Meléndez, M., Veilleux, S., et al. 2015, Nature, 519, 43610.1038/nature14261CrossRefGoogle Scholar
Tombesi, F., Veilleux, S., Meléndez, M., et al. 2017, ApJ, 850, 15110.3847/1538-4357/aa9579CrossRefGoogle Scholar
Tümer, A., Tombesi, F., Bourdin, H., et al. 2019, A&A, 629, A82Google Scholar
Veilleux, S., Meléndez, M., Sturm, E., et al. 2013, ApJ, 776, 2710.1088/0004-637X/776/1/27CrossRefGoogle Scholar
Veilleux, S., Bolatto, A., Tombesi, F., et al. 2017, ApJ, 843, 1810.3847/1538-4357/aa767dCrossRefGoogle Scholar
Zubovas, K. & King, A. R. 2014, MNRAS, 439, 40010.1093/mnras/stt2472CrossRefGoogle Scholar