We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accretion of matter onto central Black Holes (BHs) in galaxies liberates enormous amounts of feedback energy, which affects the environment from pc to Mpc scales. These BHs are usually Supermassive BHs (SMBHs: mass ⩾106M⊙) existing at the centers of active galactic nuclei (AGN), which are widely observed through their multi-wavelength emission at all cosmic epochs. Relatively recently, Intermediate-Mass BHs (IMBHs: mass = 100−106M⊙) have started to be observed hosted in Dwarf Galaxy (DG) centers. Some of the central IMBHs in DGs show signatures of activity in the form of low-luminosity AGN. We have performed Cosmological Hydrodynamical Simulations to probe SMBHs in high-z quasars (Barai et al. 2018), and IMBHs in DGs (Barai & de Gouveia Dal Pino 2019). Our simulations employ the 3D TreePM SPH code GADGET-3, and include metal cooling, star formation, chemical enrichment, stellar evolution, supernova feedback, AGN accretion and feedback. Analyzing the simulation output in post-processing, we investigate the growth of the first IMBHs and the first SMBHs, as well as their impact on star-formation.
The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 yr, using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colours, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates, missed by the other selection criteria, and thus to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possibly variable are either confirmed quasars or quasar candidates, on the basis of their colours. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of ‘contamination’ induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift.
Recent observations of local AGNs have revealed that many of them show a ‘changing look’ behavior at optical and X-rays wavelengths in the sense of transiting between different AGNs families (e.g. from type-1 to type-2 or vice-versa). In order to pinpoint the possible relation of the changes, we performed optical spectroscopic observations (with CAFOS/CAHA) of 15 changing look AGNs selected at X-rays. Highlights from our spectroscopic study are presented.
The nearby Magellanic Clouds system covers more than 200 square degrees on the sky. Much of it has been mapped across the electromagnetic spectrum at high angular resolution and sensitivity –X-ray (XMM-Newton), UV (UVIT), optical (SMASH), IR (VISTA, WISE, Spitzer, Herschel), radio (ATCA, ASKAP, MeerKAT). This provides us with an excellent dataset to explore the galaxy populations behind the stellar-rich Magellanic Clouds. We seek to identify and characterise AGN via machine learning algorithms on this exquisite data set. Our project focuses not on establishing sequences and distributions of common types of galaxies and active galactic nuclei (AGN), but seeks to identify extreme examples, building on the recent accidental discoveries of unique AGN behind the Magellanic Clouds.
The Gaia DR2 has dramatically increased the ability to detect faint nearby white dwarfs. The census of the local white dwarf population has recently been extended from 25 pc to 50 pc, effectively increasing the sample by roughly an order of magnitude. Here we examine the completeness of this new sample as a function of variables such as apparent magnitude, distance, proper motion, photometric color index, unresolved components, etc.
We present the highlights from our recent study of 22 local (z < 0.025) type-1 LINERs from the Palomar Survey, on the basis of optical long-slit spectroscopic observations taken with TWIN/CAHA, ALFOSC/NOT and HST/STIS. Our goals were threefold: (a) explore the AGN-nature of these LINERs by studying the broad (BLR-originated) Hαλ 6563 component; (b) derive a reliable interpretation for the multiple narrow components of emission lines by studying their kinematics and ionisation mechanism (via standard BPTs); (c) probe the neutral gas in the nuclei of these LINERs for the first time. Hence, kinematics and fluxes of a set of emission lines, from Hβ λ4861 to [SII]λλ 716,6731, and the NaDλλ5890,5896 doublet in absorption have been modelled and measured, after the subtraction of the underlying light from the stellar component.
Studying unidentified γ-ray sources is important as they may hide new discoveries. We conducted a multiwavelength analysis of 13 unidentified Fermi-LAT sources in the 3FGL catalogue that have no known counterparts (Unidentified Gamma-ray Sources, UnIDs). The sample was selected for sources that have a single radio and X-ray candidate counterpart in their uncertainty ellipses. The purpose of this study is to find a possible blazar signature and to model the Spectral Energy Distribution (SED) of the selected sources using an empirical log parabolic model. The results show that the synchrotron emission of all sources peaks in the infrared (IR) band and that the high-energy emission peaks in MeV to GeV bands. The SEDs of sources in our sample are all blazar like. In addition, the peak position of the sample reveals that 6 sources (46.2%) are Low Synchrotron Peaked (LSP) blazars, 4 (30.8%) of them are High Synchrotron Peaked (HSP) blazars, while 3 of them (23.0%) are Intermediate Synchrotron Peaked (ISP) blazars.
Active Galactic Nuclei (AGN) are ubiquitous variable sources. This trademark property allows the study of many aspects of AGN physics which are not possible by other means. In this review I summarize what has been learnt by the close monitoring of AGN flux variations with special emphasis in studies conducted in optical and near-infrared domain. I also highlight what knowledge is still missing from our picture of AGN phenomena, as well as possible developments expected in this new era of time-domain astronomy.
White dwarfs are useful objects with which to study the local interstellar medium (ISM). High ionisation state absorption features that cannot be attributed to the photosphere or the ISM have been observed along the line-of-sight to a number of white dwarf stars. Suggested origins of these lines include ionisation from past supernovae, stellar winds, circumstellar disks, photoionisation from nearby hot stars or also from the white dwarf itself. In this study we consider the origin of these non-photospheric highly ionised lines in two stars towards a rarefied region of the galaxy known as the extended β CMa Tunnel. We present preliminary results from our analysis of the first of these two stars.
We present a systematic study of gamma-ray blazar candidates based on a sample of 40 objects taken from the WIBR catalogue. By using a likelihood analysis, 26 of the 40 sources showed significant gamma-ray signatures ⩾ 3σ. Using high-energy test statistics (TS) maps, we confirm 8 sources, which are completely new, and show another 15 promising γ-ray candidates. The results from this analysis show that a multi-frequency approach can help to improve the current description of the gamma-ray sky.
Planetary material in the atmospheres of white dwarfs is thought to be scattered inwards from outer planetary systems. Dusty emission in the infrared traces the accretion. As the scattering of many small asteroids is a stochastic process, variability in the infrared emission is predicted. We report a 3 year near-infrared (J, H and K) monitoring campaign of 34 dusty, polluted white dwarfs which aims to search for dust emission variability. We find all white dwarfs have consistent near-infrared fluxes, implying the excess emission is stable. This suggests tidal disruption events which lead to large variabilities are rare and quick (<1 year) and become stable within a few years. For WD 0408–041, the system that shows both increases and decreases in dust emission over 11 years, our K band data suggest a potential colour change associated with the dust emission that needs further confirmation.
Nuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.
Both observational and theoretical evidence point at outflows originating from accretion disks as fundamental ingredients of active galactic nuclei (AGN). These outflows can have more than one component, for example an unbound supersonic wind and a failed wind (FW). The latter is a prediction of the simulations of radiation-driven disk outflows which show that the former is accompanied by an inner failed component, where the flow struggles to escape from the strong gravitational pull of the supermassive black hole. This FW component could provide a physical framework to interpret various phenomenological components of AGN. Here we briefly discuss a few of them: the broad line region, the X-ray obscurer, and the X-ray corona.
Connection between star formation and AGN activity has been studied widely over the past years, which shown to be very important for understanding better the role of AGN in galaxy evolution. In this context, what are the stellar ages and average stellar populations of AGN host galaxies, and if there are any differences depending on AGN type, are still open questions that brought many inconsistencies, very often due to different selection criteria used. The AGN sample detected in the ultra-hard X-rays (14–195 keV) by the Swift BAT telescope is not affected by obscuration nor is it contaminated by stellar emission, and presents some of the most unbiased samples. In this talk we will present the results obtained on AGN stellar populations and ages through spectral fittings by using the Swift-BAT AGN Spectroscopic Survey (BASS) which gives us an unique opportunity to understand better the connection between AGN and their host galaxies.
We tested how the AGN contribution (5%–75% of the total flux) may affect different morphological parameters commonly used in galaxy classification. We carried out all analysis at z ∼ 0 and at higher redshifts that correspond to the COSMOS field. Using a local training sample of >2000 visually classified galaxies, we carried out all measurements with and without the central source, and quantified how the contribution of a bright nuclear point source could affect different morphological parameters, such as: Abraham and Concelice-Bershady indices, Gini, Asymmetry, M20 moment of light, and Smoothness. We found that concentration indexes are less sensitive to both redshift and brightness in comparison to the other parameters. We also found that all parameters change significantly with AGN contribution. At z ∼ 0, up to a 10% of AGN contribution the morphological classification will not be significantly affect, but for ⩾ 25% of AGN contribution late-type spirals follow the range of parameters of elliptical galaxies and can therefore be misclassified early types.
Active galactic nuclei (AGN) are believed to regulate star formation inside their host galaxies through “AGN feedback”. We summarise our on-going study of luminous AGN (z ∼ 0.2−3; LAGN,bol 1043 erg s−1), which is designed to search for observational signatures of feedback by combining observed star-formation rate (SFR) measurements from statistical samples with cosmological model predictions. Using the EAGLE hydrodynamical cosmological simulations, in combination with our Herschel + ALMA surveys, we show that – even in the presence of AGN feedback – we do not necessarily expect to see any relationships between average galaxy-wide SFRs and instantaneous AGN luminosities. We caution that the correlation with stellar mass for both SFR and AGN luminosity can contribute to apparent observed positive trends between these two quantities. On the other hand, the EAGLE simulations, which reproduce our observations, predict that a signature of AGN feedback can be seen in the wide specific SFR distributions of all massive galaxies (not just AGN hosts). Overall, whilst we can not rule out that AGN have an immediate small-scale impact on in-situ star-formation, all of our results are consistent with a feedback model where galaxy-wide in-situ star formation is not rapidly suppressed by AGN, but where the feedback likely acts over a longer timescale than a single AGN episode.
Recent work has shown that it is possible to systematize quasars (QSOs) spectral diversity in 4DE1 parameter space. The spectra contained in most of the surveys have low signal to noise ratio which fed the impression that all QSO’s are spectroscopically similar. Exploration of 4DE1 parameter space gave rise to the concept of two populations of QSOs that present important spectroscopic differences. We aim to quantify broad emission line differences between radio quiet and radio loud sources by exploiting more complete samples of QSO with spectral coverage in Hβ, MgII and CIV emission lines. We used a high redshift sample (0.35 < z < 1) of strong radio emitter QSOs observations from Calar Alto Observatory in Spain.
High-redshift blazars (z ⩾ 2.5) are one of the most powerful classes of gamma-ray sources in the Universe. These objects posses the highest jet powers and luminosities and have black-hole masses often in excess of 109 solar masses. In addition, high-redshift blazars are important cosmological probes and serve as test objects for blazar evolution models. Due to their large distance, their high-energy emission peak is downshifted to energies below the GeV range, which makes them difficult to study with Fermi/LAT and only the very brightest objects are detectable. Hence, only a small number of high-redshift blazars could be detected with Fermi/LAT so far. In this work, we present a strategy to significantly increase the detection statistics at redshift z ⩾ 2.5 via a search for flaring events in high-redshift gamma-ray blazars whose long-term flux remains below the sensitivity limit of Fermi/LAT. Seven previously GeV undetected high-redshift blazars have been identified from their bright monthly outburst periods, while more detections are expected in the future.
We present a new tool for the analysis of the optical emission lines of the gas in the Narrow Line Region (NLR) around Active Galactic Nuclei (AGNs). This new tool can be used in large samples of objects in a consistent way using different sets of optical emission-lines taking into the account possible variations from the O/H - N/O relation. The code compares certain observed emission-line ratios with the predictions from a large grid of photoionization models calculated under the most usual conditions in the NLR of AGNs to calculate the total oxygen abundance, nitrogen-to-oxygen ratio and ionization parameter. We applied our method to a sample of Seyfert 2 galaxies with optical emission-line fluxes from the literature. Our results confirm the high metallicity of the objects of the sample and provide consistent values with the direct method. The usage of models to calculate precise ICFs is mandatory when only optical emission lines are available to derive chemical abundances using the direct method in NLRs of AGN.