Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T23:29:31.710Z Has data issue: false hasContentIssue false

Near-infrared observations of dusty white dwarfs

Published online by Cambridge University Press:  09 October 2020

Laura K. Rogers
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge, CB3 0HA, UK email: [email protected]
Siyi Xu
Affiliation:
Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI96720, USA
Amy Bonsor
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge, CB3 0HA, UK email: [email protected]
Simon Hodgkin
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Rd, Cambridge, CB3 0HA, UK email: [email protected]
Kate Y. L. Su
Affiliation:
Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ85721, USA
Ted von Hippel
Affiliation:
Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL32114, USA
Rights & Permissions [Opens in a new window]

Abstarct

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planetary material in the atmospheres of white dwarfs is thought to be scattered inwards from outer planetary systems. Dusty emission in the infrared traces the accretion. As the scattering of many small asteroids is a stochastic process, variability in the infrared emission is predicted. We report a 3 year near-infrared (J, H and K) monitoring campaign of 34 dusty, polluted white dwarfs which aims to search for dust emission variability. We find all white dwarfs have consistent near-infrared fluxes, implying the excess emission is stable. This suggests tidal disruption events which lead to large variabilities are rare and quick (<1 year) and become stable within a few years. For WD 0408–041, the system that shows both increases and decreases in dust emission over 11 years, our K band data suggest a potential colour change associated with the dust emission that needs further confirmation.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of International Astronomical Union

Footnotes

Deceased

References

Becklin, E. E., Farihi, J., Jura, M., Song, I., et al. 2005, ApJL, 632, 119CrossRefGoogle Scholar
Debes, J. H. & Sigurdsson, S. 2002, ApJ, 572, 556CrossRefGoogle Scholar
Dye, S., Warren, S. J., Hambly, N. C., Cross, N. J. G., et al. 2006, MNRAS, 372, 12271252CrossRefGoogle Scholar
Farihi, J., Barstow, M. A., Redfield, S., Dufour, P., et al. 2010, MNRAS, 404, 21232135Google Scholar
Farihi, J., van Lieshout, R., Cauley, P. W., Dennihy, E., et al. 2018, MNRAS, 481, 26012611CrossRefGoogle Scholar
Gänsicke, B. T., Marsh, T. R., Southworth, J., & Rebassa-Mansergas, A. 2006, Science, 314, 19081910CrossRefGoogle Scholar
Graham, J. R., Matthews, K., Neugebauer, G., & Soifer, B. T. 1990, ApJ, 357, 216223CrossRefGoogle Scholar
Irwin, M. J., Lewis, J., Hodgkin, S., Bunclark, P., et al. 2004, International Society for Optics and Photonics, 5493, 411422Google Scholar
Irwin, J., Hodgkin, S., Aigrain, S., Hebb, L., et al. 2007, MNRAS, 377, 741758CrossRefGoogle Scholar
Jura, M. 2003, ApJL, 584, 91CrossRefGoogle Scholar
Jura, M., Farihi, J., & Zuckerman, B. 2007, ApJ, 663, 1285CrossRefGoogle Scholar
Kilic, M., von Hippel, T., Leggett, S. K., & Winget, D. E. 2006, ApJ, 646, 474CrossRefGoogle Scholar
Koester, D., Gänsicke, B. T., & Farihi, J. 2014, A&A, 566, A34Google Scholar
Rebassa-Mansergas, A., Solano, E., Xu, S., Rodrigo, C., et al. 2019, MNRAS, 489, 39904000Google Scholar
Swan, A., Farihi, J., & Wilson, T. G. 2019, MNRAS: Letters, 484, 109113CrossRefGoogle Scholar
Vanderburg, A., Johnson, J. A., Rappaport, S., Bieryla, A., et al. 2015, Nature, 526, 546CrossRefGoogle Scholar
Vanderbosch, Z., Hermes, J. J., Dennihy, E., Dunlap, B. H., et al. 2019, arXiv:1908.09839Google Scholar
Veras, D., Leinhardt, Z. M., Bonsor, A., & Gänsicke, B. T. 2014, MNRAS, 445, 22442255CrossRefGoogle Scholar
Wilson, T. G., Farihi, J., Gänsicke, B. T., & Swan, A. 2019, MNRAS, 487, 133146CrossRefGoogle Scholar
Wyatt, M. C., Farihi, J., Pringle, J. E., & Bonsor, A. 2014, MNRAS, 439, 33713391CrossRefGoogle Scholar
Xu, S. & Jura, M. 2014, ApJL, 792, 39CrossRefGoogle Scholar
Xu, S., Su, K. Y., Rogers, L. K., Bonsor, A., et al. 2018, ApJ, 866, 108CrossRefGoogle Scholar
Zuckerman, B. & Becklin, E. E. 1987, Nature, 330, 138CrossRefGoogle Scholar
Zuckerman, B., Koester, D., Reid, I. N., & Hünsch, M. 2003, ApJ, 596, 477CrossRefGoogle Scholar
Zuckerman, B., Melis, C., Klein, B., Koester, D., et al. 2010, ApJ, 722, 725CrossRefGoogle Scholar