We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyze individual white dwarfs in open clusters observed by Gaia. In particular, we determine ages when different model ingredients are used. We also explore fundamental properties of the white dwarfs, including temperature and mass, when using different filter combinations. Such tests are important to understanding any systematic effects when applying similar techniques to field stars.
We introduce Hypercat, a large set of 2-d AGN torus images computed with the state-of-the-art clumpy radiative transfer code Clumpy. The images are provided as a 9-dimensional hypercube, in addition to a smaller hypercube of corresponding projected dust distribution maps. Hypercat also comprises a software suite for easy use of the hypercubes, quantification of image morphology, and simulation of synthetic observations with single-dish telescopes, interferometers, and Integral Field Units. We apply Hypercat to NGC 1068 and find that it can be spatially resolved in Near- and Mid-IR, for the first time with single-dish apertures, on the upcoming generation of 25–40m class telescopes. We also find that clumpy AGN torus models within a range of the parameter space can explain on scales of several parsec the recently reported polar elongation of MIR emission in several sources, while not upending basic assumptions about AGN unification.
We present a homogeneous analysis of a large sample of magnetic white dwarf stars (with SDSS, PanSTARRS and Gaia data) using state-of-the-art magnetic atmosphere models and fitting techniques. We discuss the properties of the sample as well as the implication on our understanding of the nature and evolution of such objects.
We have shown that in the inner belt the loss of asteroids from the ν6 secular resonance and the 3:1 Jovian mean motion resonance accounts for the observation that the mean size of the asteroids increases with increasing orbital inclination. We have used that observation to constrain the Yarkovsky loss timescale and to show that the family asteroids are embedded in a background population of old ghost families. We argue that all the asteroids in the inner belt originated from a small number of asteroids and that the initial mass of the belt was similar to that of the present belt. We also show that the observed size frequency distribution of the Vesta asteroid family was determined by the action of Yarkovsky forces, and that the age of this family is comparable to the age of the solar system.
We explored a sample of 545 local galaxies using data from the 3XMM-DR7 and SDSS-DR8 surveys. We carried out all analyses up to z ˜ 0.2, and we studied the relation between X/O flux ratio and accretion rate for different classes of active galaxies such as LINERs and Seyfert 2. We obtained a slight correlation between the two parameters if the whole sample of AGN is used. However, LINERs and Sy2 galaxies show different properties, slight correlation and slight anti-correlation, respectively. This could confirm that LINERs and Sy2 galaxies have different accretion efficiencies and maybe different accretion disc properties, as has been suggested previously.
We employ Pan-STARRS photometry, Gaia trigonometric parallaxes, modern stellar evolution and atmosphere models, and our Bayesian fitting approach to determine cooling and total ages for 159,238 white dwarfs. In many cases we are able to derive precise ages (better than 5%) for individual white dwarfs. These results are meant for broad use within the white dwarf and stellar astrophysics communities and we plan to make available on-line the posterior distributions for cooling age, total age, initial stellar mass, and other parameters.
At energies approaching the Planck energy scale 1019GeV, several quantum-gravity theories predict that familiar concepts such as Lorentz (LIV) symmetry can be broken. Such extreme energies are currently unreachable by experiments on Earth, but for photons traveling over cosmological distances the accumulated deviations from the Lorentz symmetry may be measurable using the Cherenkov Telescope Array (CTA). To study the spectral hardening feature observed in some VHE gamma-ray blazars, we calculate the reduction of the EBL gamma-gamma opacity due to the existence of underdense regions along the line of sight to VHE -gamma ray sources and we compared with the possibility of a LIV signature. Considering the LIV effect, we found that the cosmic opacity for VHE-gamma rays with energy more than 10 TeV can be strongly reduced. I will further discuss the impact of LIV on the Compton scattering process, and how future CTA observations may open an exciting window on studies of the fundamental physics.
The RadioAstron Space VLBI mission utilized the 10-m radio telescope on board the dedicated Spektr-R spacecraft to observe cosmic radio sources with an unprecedented angular resolution at centimeter wave lengths in total and polarized light. The longest baseline of the space-ground interferometer is about 350000 km. It operated in 2011–2019 together with 58 largest ground radio telescopes. Resolution as high as 10 microarcsec has been achieved. An overview of its AGN science results will be presented in the talk. It includes a probe of jet emission mechanism through brightness temperature measurements, reconstruction of magnetic field structure close to the jet origin using polarization data, jet formation and collimation study for well resolved nearby AGN, as well as observations and analysis of jet precession and plasma instabilities. We will also discuss a new scattering effect which was discovered by RadioAstron to affect high resolution radio measurements of AGN and SgrA*.
The formation of stars constitutes one of the basic problems in astrophysics. Understanding star formation efficiency of molecular clouds (MCs) of a galaxy is necessary for studying the galactic evolution. Present data and theoretical formulations show that the structure and dynamics of the interstellar medium (ISM) are extremely complex. Therefore, there is no simple model that can explain adequately the star formation efficiency of MCs because of its complex nature. The initial mass of the cloud needed for collapse varies based on the environment in which the cloud resides and the strength of its magnetic field, turbulence, as well as the speed of rotation. In this paper, we estimate the star formation efficiency by combining pre-determined models and the critical mass formulated by Kumssa & Tessema (2018).
For the past 25 years, we have been considering the Stark effect for neutral helium lines in DB white dwarfs using the standard Stark broadening theory in both the impact regime (in the center of the lines) and the quasi-static regime (in the wings) for the electrons, while neglecting the effect of ions in motion. Although this is probably a good approximation based on previous theoretical work, the transition between the two regimes for the electrons and the contribution of the ions very near the core might be poorly represented. To better represent these particularities, we report here the results of a new series of simulations that treat the local dynamics and interactions of both electrons and ions around a neutral helium atom. From these simulations, we produce new improved line profiles, which we compare with our previous analytical results.
Surveys have shown radio-loud (RL) quasars constitute 10%-15% of the total quasar population and rest are radio-quiet (RQ). However, it is unknown if this radio-loud fraction (RLF) remains consistent among different parameter spaces. This study shows that RLF increases for increasing full width half maximum (FWHM) velocity of the Hβ broad emission line (z < 0.75). To analyse the reason, we compared bolometric luminosity of RL and RQ quasars sample which have FWHM of Hβ broad emission line greater than 15000km/s (High Broad Line or HBL) with which have FWHM of Hβ emission line less than 2500km/s (Low Broad Line or LBL). From the distributions we can conclude for the HBL, RQ and RL quasars are peaking separately and RL quasars are having higher values whereas for the LBL the peaks are almost indistinguishable. We predicted selection effects could be the possible reason but to conclude anything more analysis is needed. Then we compared our result with Wills & Brotherton (1995) and have shown that some objects from our sample do not follow the pattern of the logR vs FWHM plot where R is the ratio of 5 GHz radio core flux density with the extended radio lobe flux density.
Theories that attempt to unify the four fundamental interactions and alternative theories of gravity predict time and/or spatial variation of the fundamental constants of nature. Different versions of these theories predict different behaviours for these variations. As a consequence, experimental and observational bounds are an important tool to check the validity of such proposals. In this paper, we review constraints on the possible variation of the fundamental constants from astronomical observations and geophysical experiments designed to test the constancy of the fundamental constants of nature over different timescales. We also focus on the limits that can be obtained from white dwarfs, which can constrain the variation of the constants with the gravitational potential.
Irrespective of whether Active Galactic Nuclei (AGN) is cored with Supermassive Black Holes (SMBH) or not, there is a general consensus that observations indicate that the AGN plays fundamental role in galaxy evolution. The accretion disc powered fueling of the AGN and counter-feedback on its environment in the form of stress-energy-momentum along the radial component and an associated polodial jets seems viable model. On the theoretical ground there is no unified theory that compromise the observations. But there are pull of such diverse physics simulated to describe the observational works. So, there is unsettled theoretical framework how the activity of the AGN plays role in the evolution of host galaxy. Motivated by this we studied the role of AGN on its host galaxy evolution where General relativistic (GR) Magnetohydrodynamics (MHD) equation is considered to derive radial pressure that invokes star forming cold gases. Methodologically the central engine of the AGN is considered with SMBH/pseudo-SMBH. Locally, around the AGN, Reissner-Nordstrom-de Sitter metric is considered that reduces to the Schwarzschoild-de Sitter (SdS) background. Geometrically, a simple spherical geometry is superimposed with central disc structure assumed by cored void mass ablating model. The results of the work indicates that the AGN plays role in galaxy evolution, especially in the nearby environment. Also we report that the adjacent envelope to the AGN seems quiet with no activity in formation.
The main sequence offers a method for the systematization of quasar spectral properties. Extreme FeII emitters (or extreme Population A, xA) are believed to be sources accreting matter at very high rates. They are easily identifiable along the quasar main sequence, in large spectroscopic surveys over a broad redshift range. The very high accretion rate makes it possible that massive black holes hosted in xA quasars radiate at a stable, extreme luminosity-to-mass ratio. After reviewing the basic interpretation of the main sequence, we report on the possibility of identifying virial broadening estimators from low-ionization line widths, and provide evidence of the conceptual validity of redshift-independent luminosities based on virial broadening for a known luminosity-to-mass ratio.
Convection is a highly turbulent, three dimensional process that is traditionally treated using a simple, local, time independent description. Convection is one of the largest sources of theoretical uncertainty in stellar modeling. We outline recent progress in studies using pulsating white dwarfs to constrain convection and calibrate mixing length theory.
A powerful tool to investigate the stability of the orbits of natural and artificial bodies is represented by perturbation theory, which allows one to provide normal form estimates for nearly-integrable problems in Celestial Mechanics. In particular, we consider the orbital stability of point-mass satellites moving around the Earth. On the basis of the J2 model, we investigate the stability of the semimajor axis. Using a secular Hamiltonian model including also lunisolar perturbations, the so-called geolunisolar model, we study the stability of the other orbital elements, namely the eccentricity and the inclination. We finally discuss the applicability of Nekhoroshev’s theorem on the exponential stability of the action variables. To this end, we investigate the non-degeneracy properties of the J2 and geolunisolar models. We obtain that the J2 model satisfies a “three-jet” non-degeneracy condition, while the geolunisolar model is quasi-convex non-degenerate.
Tidal evolution of low-eccentric circumbinary planets is expected to drive the rotational evolution toward a pseudo-synchronous solution. In this work, we present a study of the oscillation amplitudes around this state by considering that the two central stars exert creep tides on the planet. These amplitudes are computed by direct numerical integrations of the creep equations and also by means of the calculation of the coefficients of the periodic terms in this stationary solution. As in the two-body-problem, the planetary spin and lag-angle are observed to have maximum oscillation amplitudes for stiff bodies and almost null oscillation for the gaseous regime, while the opposite behaviour is observed in the equatorial and polar flattenings. Our analytical approximation shows to be very accurate and specially necessary for very-low eccentric planets. However, the magnitudes of the oscillation amplitudes around the pseudo-synchronous solution in the circumbinary problem appears to be very small respect to the mean value. Thus, considering these oscillation in the computation of the tidal energy dissipation may not have a substantial contribution in the results, at least compared to the case in which only the mean values are taken into account.
Formation of close double white dwarfs likely requires the initial binary system to evolve through two successive common envelope (CE) phases. A prominent method for describing CE outcomes involves defining an ejection efficiency, αeff, which quantifies the fraction of orbital energy available to unbind the envelope. Reproducing observed post-CE orbital parameters has proven difficult for numerical simulations, as the companion’s decaying orbit fails to eject the envelope. The ejection failure seen in numerical simulations may be resolved with a proper treatment of convection, whereby the binary orbit shrinks before energy can drive ejection. Where the orbital decay timescale exceeds the convective transport timescale, the energy released during inspiral is carried to the stellar surface and radiated away. By including convection, we produce sub-day post-CE orbital periods, a result consistent with observations. We comment on the effects of convection for the population of double white dwarfs that evolve through two CEs.
We have found three new members of the Rampo asteroids family: 2009HD95, 2010VO19, 2013JF69. We estimated the Yarkovsky semimajor axis drift rate. Based on the simulation results, estimates of the asteroid pairs’ age included in the family are obtained. In the scenario of the cascade disruption of the parent body of the asteroid (10321) Rampo, one can note the concentration of estimates of the pairs’ age to values of 900, 750, 500, and 250 kyr.
Perturbative analyses of planetary resonances commonly predict singularities and/or divergences of resonance widths at very low and very high eccentricities. We have recently re-examined the nature of these divergences using non-perturbative numerical analyses, making use of Poincaré sections but from a different perspective relative to previous implementations of this method. This perspective reveals fine structure of resonances which otherwise remains hidden in conventional approaches, including analytical, semi-analytical and numerical-averaging approaches based on the critical resonant angle. At low eccentricity, first order resonances do not have diverging widths but have two asymmetric branches leading away from the nominal resonance location. A sequence of structures called “low-eccentricity resonant bridges” connecting neighboring resonances is revealed. At planet-grazing eccentricity, the true resonance width is non-divergent. At higher eccentricities, the new results reveal hitherto unknown resonant structures and show that these parameter regions have a loss of some – though not necessarily entire – resonance libration zones to chaos. The chaos at high eccentricities was previously attributed to the overlap of neighboring resonances. The new results reveal the additional role of bifurcations and co-existence of phase-shifted resonance zones at higher eccentricities. By employing a geometric point of view, we relate the high eccentricity phase space structures and their transitions to the shapes of resonant orbits in the rotating frame. We outline some directions for future research to advance understanding of the dynamics of mean motion resonances.