Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T18:26:58.276Z Has data issue: false hasContentIssue false

Dynamical constraints on the evolution of the inner asteroid belt and the sources of meteorites

Published online by Cambridge University Press:  30 May 2022

Stanley F. Dermott
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611, US email: [email protected]
Dan Li
Affiliation:
NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, US email: [email protected]
Apostolos A. Christou
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have shown that in the inner belt the loss of asteroids from the ν6 secular resonance and the 3:1 Jovian mean motion resonance accounts for the observation that the mean size of the asteroids increases with increasing orbital inclination. We have used that observation to constrain the Yarkovsky loss timescale and to show that the family asteroids are embedded in a background population of old ghost families. We argue that all the asteroids in the inner belt originated from a small number of asteroids and that the initial mass of the belt was similar to that of the present belt. We also show that the observed size frequency distribution of the Vesta asteroid family was determined by the action of Yarkovsky forces, and that the age of this family is comparable to the age of the solar system.

Keywords

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Christou, A., Dermott, S., & Li, D. 2020, in: AAS/Division of Dynamical Astronomy Meeting, 52, 100.05.Google Scholar
Delbó, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. 2017, Science, 357, 1026.CrossRefGoogle Scholar
Delbó, M., Avdellidou, C., & Morbidelli, A. 2019, A&A, 624, A69.Google Scholar
Dell’Oro, A., Boccenti, J., Spoto, F., Paolicchi, P., & Knežević, Z. 2021, MNRAS, 506, 4302.CrossRefGoogle Scholar
DeMeo, F.E., & Carry, B. 2014, Nature, 505, 629.CrossRefGoogle Scholar
Dermott, S.F., Christou, A.A., Li, D., Kehoe, T. J.J., & Robinson, J.M. 2018, Nature Astronomy, 2, 549.CrossRefGoogle Scholar
Dermott, S.F., Li, D., Christou, A.A., Kehoe, T. J.J., Murray, C.D., & Robinson, J.M. 2021, MNRAS, 505, 1917.CrossRefGoogle Scholar
Dohnanyi, J.S. 1969, Journal of Geophysical Research, 74, 2531.CrossRefGoogle Scholar
Durda, D.D., & Dermott, S.F. 1997, Icarus, 130, 140.CrossRefGoogle Scholar
Eugster, O., Herzog, G.F., Marti, K., & Caffee, M.W. 2006, in: Lauretta, Dante S. & McSween, H.Y. (eds.), Meteorites and the Early Solar System II, 829CrossRefGoogle Scholar
Farinella, P., Froeschlé, C., Froeschlé, C., Gonczi, R., Hahn, G., Morbidelli, A., & Valsecchi, G.B. 1994, Nature, 371, 314.CrossRefGoogle Scholar
Farinella, P. & Vokrouhlický, D. 1999, Science, 283, 1507.CrossRefGoogle Scholar
Farnocchia, D., Chesley, S.R., Chodas, P.W., Micheli, M., Tholen, D.J., Milani, A., Elliott, G.T., & Bernardi, F. 2013, Icarus, 224, 192.CrossRefGoogle Scholar
Gallardo, T. 2007, Icarus, 190, 280.CrossRefGoogle Scholar
Gallardo, T., Venturini, J., Roig, F., & Gil-Hutton, R. 2011, Icarus, 214, 632.CrossRefGoogle Scholar
Gladman, B.J., Migliorini, F., Morbidelli, A., Zappala, V., Michel, P., Cellino, A., Froeschle, C., Levison, H.F., Bailey, M., & Duncan, M. 1997, Science, 277, 197.CrossRefGoogle Scholar
Granvik, M., Morbidelli, A., Vokrouhlický, D., Bottke, W.F., Nesvorný, D., & Jedicke, R. 2017, A&A, 598, A52.Google Scholar
Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W.F., Beshore, E., Vokrouhlický, D., Nesvorný, D., & Michel, P. 2018, Icarus, 312, 181.CrossRefGoogle Scholar
Greenberg, A.H., Margot, J.L., Verma, A.K., Taylor, P.A., & Hodge, S.E. 2020, AJ, 159, 92.CrossRefGoogle Scholar
Hendler, N.P. & Malhotra, R. 2020, The Planetary Science Journal, 1, 75.CrossRefGoogle Scholar
Jacobson, S.A., Marzari, F., Rossi, A., Scheeres, D.J., & Davis, D.R. 2014, MNRAS (Letters), 439, L95.Google Scholar
Jenniskens, P. 2018, in: AAS/Division of Dynamical Astronomy Meeting, 49, 102.04.Google Scholar
Jenniskens, P. 2020, in: IAU General Assembly, 30, 9.Google Scholar
Jenniskens, P., Gabadirwe, M., Yin, Q-Z., et al. 2021, Meteoritics & Planetary Science, 56, 844.CrossRefGoogle Scholar
Knežević, Z., & Milani, A. 2000, Cel. Mech. Dyn. Astr., 78, 17 CrossRefGoogle Scholar
Kruijer, T.S., Burkhardt, C., Budde, G., & Kleine, T. 2017, PNAS, 114, 6712.CrossRefGoogle Scholar
Marchi, S., McSween, H.Y., O’Brien, D.P., Schenk, P., De Sanctis, M.C., Gaskell, R., Jaumann, R., Mottola, S., Preusker, F., Raymond, C.A., Roatsch, T., & Russell, C.T. 2012, Science, 336, 690.CrossRefGoogle Scholar
Marzari, F., Rossi, A., Golubov, O., & Scheeres, D.J. 2020, AJ, 160, 128.CrossRefGoogle Scholar
Masiero, J.R., Grav, T., Mainzer, A.K., Nugent, C.R., Bauer, J.M., Stevenson, R. & Sonnett, S. 2014, ApJ, 791, 121.CrossRefGoogle Scholar
McSween, H.Y., Mittlefehldt, D.W., Russell, C.T., & Raymond, C.A. 2013, Meteoritics & Planetary Science, 48, 2073.CrossRefGoogle Scholar
Migliorini, F., Michel, P., Morbidelli, A., Nesvorný, D., & Zappala, V. 1998, Science, 281, 2022.CrossRefGoogle Scholar
Milani, A., Cellino, A., Knežević, Z., Novaković, B., Spoto, F., & Paolicchi, P. 2014, Icarus, 234, 46.CrossRefGoogle Scholar
Minton, D.A. & Malhotra, R. 2010, Icarus, 207, 744.CrossRefGoogle Scholar
Morbidelli, A. & Nesvorný, D. 1999, Icarus, 139, 295.CrossRefGoogle Scholar
Morbidelli, A., Delbo, M., Granvik, M., Bottke, W.F., Jedicke, R., Bolin, B., Michel, P., & Vokrouhlicky, D. 1997, Icarus, 340, 113631.CrossRefGoogle Scholar
Murray, C.D. & Dermott, S.F. 1999, Solar System Dynamics, Cambridge University Press, Cambridge.Google Scholar
Nesvorný, D. 2015, HCM Asteroid Families V3.0. NASA Planetary Data System.Google Scholar
Nesvorný, D., Brož, M., & Carruba, V 2015, in: Michel, P., DeMeo, F.E. , & Bottke, W.F. (eds.), Asteroids IV, 297.Google Scholar
Nugent, C.R., Margot, J.L., Chesley, S.R., & Vokrouhlický, D. 2012, AJ, 144, 60.CrossRefGoogle Scholar
Pavela, D., Novaković, B., Carruba, V., & Radović, V, 2021, MNRAS, 501, 356.CrossRefGoogle Scholar
Spoto, F., Milani, A., & Knežević, Z. 2015, Icarus, 257, 275.CrossRefGoogle Scholar
Vokrouhlický, D. & Farinella, P. 2000, Nature, 407, 606.CrossRefGoogle Scholar
Walsh, K.J., Morbidelli, A., Raymond, S.N., O’Brien, D.P., & Mandell, A.M. 2011, Nature, 475, 206.CrossRefGoogle Scholar
Wisdom, J. 1985, Nature, 315, 731.CrossRefGoogle Scholar
Zappala, V., Cellino, A., Farinella, P., & Knežević, Z. 1990, AJ, 100, 2030.CrossRefGoogle Scholar