No CrossRef data available.
Published online by Cambridge University Press: 29 January 2021
Surveys have shown radio-loud (RL) quasars constitute 10%-15% of the total quasar population and rest are radio-quiet (RQ). However, it is unknown if this radio-loud fraction (RLF) remains consistent among different parameter spaces. This study shows that RLF increases for increasing full width half maximum (FWHM) velocity of the Hβ broad emission line (z < 0.75). To analyse the reason, we compared bolometric luminosity of RL and RQ quasars sample which have FWHM of Hβ broad emission line greater than 15000km/s (High Broad Line or HBL) with which have FWHM of Hβ emission line less than 2500km/s (Low Broad Line or LBL). From the distributions we can conclude for the HBL, RQ and RL quasars are peaking separately and RL quasars are having higher values whereas for the LBL the peaks are almost indistinguishable. We predicted selection effects could be the possible reason but to conclude anything more analysis is needed. Then we compared our result with Wills & Brotherton (1995) and have shown that some objects from our sample do not follow the pattern of the logR vs FWHM plot where R is the ratio of 5 GHz radio core flux density with the extended radio lobe flux density.