Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T21:14:34.383Z Has data issue: false hasContentIssue false

Jet opening angle and linear scale of launch region of blazars

Published online by Cambridge University Press:  29 January 2021

Xiang Liu
Affiliation:
Xinjiang Astronomical Observatory, CAS, 150 Science-1 Street, Urumqi830011, China. Email: [email protected] Qiannan Normal University for Nationalities, 558000Duyun, China
Pengfei Jiang
Affiliation:
Xinjiang Astronomical Observatory, CAS, 150 Science-1 Street, Urumqi830011, China. Email: [email protected] Graduate University of Chinese Academy of Sciences, Beijing100049, China
Lang Cui
Affiliation:
Xinjiang Astronomical Observatory, CAS, 150 Science-1 Street, Urumqi830011, China. Email: [email protected] Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing210008, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We explore the intrinsic jet opening angle (IJOA) of blazars, from the literature, we found that the blazar number density peaks around 0.5° of IJOA and declines quickly with increasing IJOA for flat spectrum radio quasars (FSRQs), while the number density has double peaks around 0.3° and 2.0° of IJOA for BL Lacs. We assume that the black hole accretion-produced jet may have the smaller IJOA (for its larger linear scale of launch region), and the BH spin-produced jet may have the larger IJOA (for its smaller launch region), such that the FSRQs are accretion dominated for their single peaked small IJOA, while the BL Lacs are either accretion or BH spin dominated for their double peaked IJOA.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Blandford, R. D., & Znajek, R. L., 1977, MNRAS, 179, 433 10.1093/mnras/179.3.433CrossRefGoogle Scholar
Blandford, R. D., & Payne, D. G., 1982, MNRAS, 199, 883 10.1093/mnras/199.4.883CrossRefGoogle Scholar
Blandford, R. D., & Konigl, A., 1979, ApJ, 232, 34 10.1086/157262CrossRefGoogle Scholar
Cao, X., 2014, ApJ, 783, 51 10.1088/0004-637X/783/1/51CrossRefGoogle Scholar
Finke, J. D., 2019, ApJ, 870, 28 10.3847/1538-4357/aaf00cCrossRefGoogle Scholar
Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A., & Sbarrato, T., 2014, Nature, 515, 376 10.1038/nature13856CrossRefGoogle Scholar
Hada, K., Kino, M., Doi, A., et al., 2013, ApJ, 775, 70 10.1088/0004-637X/775/1/70CrossRefGoogle Scholar
Liu, X., Han, Z. H., & Zhang, Z., 2016, Astrophys. Space Sci, 361, id910.1007/s10509-015-2601-3CrossRefGoogle Scholar
Lobanov, A. P., 1998, A&A, 330, 79 Google Scholar
Marscher, A. P., & Gear, W. K., 1985, ApJ, 298, 114 10.1086/163592CrossRefGoogle Scholar
Marscher, A. P, Jorstad, S. G, Gómez, J.-L, et al., 2002, Nature, 417, 625 10.1038/nature00772CrossRefGoogle Scholar
Pushkarev, A. B., Hovatta, T., Kovalev, Y. Y., et al., 2012a, A&A, 545, A113 Google Scholar
Pushkarev, A. B., et al., 2012b, ArXiv e-prints, 1205.0659Google Scholar
Russell, D. M., Gallo, E., & Fender, R. P., 2013, MNRAS, 431, 405 10.1093/mnras/stt176CrossRefGoogle Scholar
Steiner, J. F., McClintock, J. E., & Narayan, R., 2013, ApJ, 762, 104 10.1088/0004-637X/762/2/104CrossRefGoogle Scholar
van Velzen, S., & Falcke, H., 2013, A&A, 557, L7 Google Scholar