Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:37:04.510Z Has data issue: false hasContentIssue false

A numerical criterion evaluating the robustness of planetary architectures; applications to the υ Andromedæ system

Published online by Cambridge University Press:  30 May 2022

Ugo Locatelli
Affiliation:
Dipartimento di Matematica dell’Università degli Studi di Roma “Tor Vergata”, via della ricerca scientifica 1, 00133 Roma, Italy emails: [email protected], [email protected]
Chiara Caracciolo
Affiliation:
Dipartimento di Matematica dell’Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy emails: [email protected], [email protected]
Marco Sansottera
Affiliation:
Dipartimento di Matematica dell’Università degli Studi di Milano, via Saldini 50, 20133 Milano, Italy emails: [email protected], [email protected]
Mara Volpi
Affiliation:
Dipartimento di Matematica dell’Università degli Studi di Roma “Tor Vergata”, via della ricerca scientifica 1, 00133 Roma, Italy emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We revisit the problem of the existence of KAM tori in extrasolar planetary systems. Specifically, we consider the υ Andromedæ system, by modelling it with a three-body problem. This preliminary study allows us to introduce a natural way to evaluate the robustness of the planetary orbits, which can be very easily implemented in numerical explorations. We apply our criterion to the problem of the choice of a suitable orbital configuration which exhibits strong stability properties and is compatible with the observational data that are available for the υ Andromedæ system itself.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Arnold, V.I., 1963, Russ. Math. Surv., 18, 9 CrossRefGoogle Scholar
Arnold, V.I., 1989, Mathematical methods of classical mechanics, 2nd edition, Springer-Verlag CrossRefGoogle Scholar
Butler, R.P., et al., 1999, Astroph. Jour., 526, 916 CrossRefGoogle Scholar
Calleja, R.C., Celletti, A., Gimeno, J., & de la Llave, R., 2022, Commun. Nonlinear Sc. Numer. Simulat., 106, 106099 CrossRefGoogle Scholar
Caracciolo, C., 2021, Math. in Engineering, 4, 1 CrossRefGoogle Scholar
Caracciolo, C., & Locatelli, U., 2020, Jour. of Comput. Dynamics, 7, 425 CrossRefGoogle Scholar
Caracciolo, C., & Locatelli, U., 2021, Commun. Nonlinear Sc. Numer. Simulat., 97, 105759 CrossRefGoogle Scholar
Caracciolo, C., Locatelli, U., Sansottera, M., & Volpi, M., 2022, Mon. Not. Royal Astron. Soc., 510, 2147 CrossRefGoogle Scholar
Chiang, E.I., Tabachnik, S., & Tremaine, S., 2001, Astron. Jour., 122, 1607 CrossRefGoogle Scholar
Cloutier, R., et al., 2019, Astron. & Astroph., 629, A111 CrossRefGoogle Scholar
Deitrick, R., et al., 2015, Astroph. Jour., 798, 46 CrossRefGoogle Scholar
Figueras, J.-Ll., Haro, A., & Luque, A., 2017, Found. Comput. Math., 17, 1123 CrossRefGoogle Scholar
Giorgilli, A., Locatelli, U., & Sansottera, M., 2009, Cel. Mech. & Dyn. Astr., 104, 159 CrossRefGoogle Scholar
Giorgilli, A., Locatelli, U., & Sansottera, M., 2017, Reg. & Chaot. Dyn., 22, 54 CrossRefGoogle Scholar
Giorgilli, A., & Sansottera, M., 2012, in Cincotta, P.M., Giordano, C.M. & Efthymiopoulos, C. (eds.), Chaos, Diffusion and Non-integrability in Hamiltonian Systems, Universidad Nacional de La Plata and Asociación Argentina de Astronomía PublishersGoogle Scholar
Kolmogorov, A.N., 1954, Engl. transl. in Lecture Notes in Physics, 1979, 93, 51 Google Scholar
Laskar, J., Astron. & Astroph., 1988, 198, 341 Google Scholar
Laskar, J., 1989, Notes scientifiques et techniques du Bureau des Longitudes S026, available at https://www.imcce.fr/content/medias/publications/publications-recherche/nst/docs/S026.pdf Google Scholar
Laskar, J., 2003, in Benest, D., Froeschlé, C., & E. Lega, E. (eds.), Hamiltonian systems and Fourier analysis, Taylor and FrancisGoogle Scholar
Laskar, J., & Petit, A.C., 2017, Astron. & Astroph., 605, A72 CrossRefGoogle Scholar
Laskar, J., & Robutel, P., 2001, Cel. Mech. & Dyn. Astr., 80, 39 CrossRefGoogle Scholar
Libert, A.-S., Sansottera, M. 2013, Cel. Mech. & Dyn. Astr., 117, 149 CrossRefGoogle Scholar
Locatelli, U., Caracciolo, C., Sansottera, M., & Volpi, M., 2022, in: Baù, G., Di Ruzza, S., Páez, R.I., Penati, T. & Sansottera, M. (eds.), I-CELMECH Training School – New frontiers of Celestial Mechanics: theory and applications, Springer PROMS (in press)Google Scholar
Locatelli, U., & Giorgilli, A., 2000, Cel. Mech. & Dyn. Astr., 78, 47 CrossRefGoogle Scholar
Mayor, M., & Queloz, D., 1995, Nature, 378, 355 CrossRefGoogle Scholar
McArthur, B.E., et al., 2010, Astroph. J., 715, 1203 CrossRefGoogle Scholar
McArthur, B.E., et al., 2014, Astroph. J., 795, 41 CrossRefGoogle Scholar
Michtchenko, T.A., & Malhotra, R., 2004, Icarus, 168, 237 CrossRefGoogle Scholar
Morbidelli, A., & Giorgilli, A., 1995, J. Stat. Phys., 78, 1607 CrossRefGoogle Scholar
Moser, J., 1962, Nachr. Akad. Wiss. Gött., Math. Phys., 1, 1 Google Scholar
Perryman, M., 2018, The Exoplanet Handbook, Cambridge Univ. Press, ISBN 9781108419772CrossRefGoogle Scholar
Petit, A.C., Laskar, J., & Boué, G., 2017, Astron. & Astroph., 607, A35 CrossRefGoogle Scholar
Sansottera, M., & Libert, A.-S., 2019, Cel. Mech. & Dyn. Astr., 131, 38 CrossRefGoogle Scholar
Valvo, L., & Locatelli, U., 2022, Jour. of Comput. Dynamics, in press Google Scholar
Volpi, M., Locatelli, U., & Sansottera, M., 2018, Cel. Mech. & Dyn. Astr., 130, 36 CrossRefGoogle Scholar