Let p be a prime and let
$J_r$
denote a full
$r \times r$
Jordan block matrix with eigenvalue
$1$
over a field F of characteristic p. For positive integers r and s with
$r \leq s$
, the Jordan canonical form of the
$r s \times r s$
matrix
$J_{r} \otimes J_{s}$
has the form
$J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _{r}}$
. This decomposition determines a partition
$\lambda (r,s,p)=(\lambda _1,\lambda _2,\ldots , \lambda _{r})$
of
$r s$
. Let
$n_1, \ldots , n_k$
be the multiplicities of the distinct parts of the partition and set
$c(r,s,p)=(n_1,\ldots ,n_k)$
. Then
$c(r,s,p)$
is a composition of r. We present a new bottom-up algorithm for computing
$c(r,s,p)$
and
$\lambda (r,s,p)$
directly from the base-p expansions for r and s.