We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The properties of interstellar dust (ID) can be studied in great detail by making use of X-ray spectroscopy techniques. The radiation of X-rays sources is scattered and absorbed by dust grains in the interstellar medium. The X-ray band is especially suitable to study silicates - one of the main components of ID -since it contains the absorption edges of Si, Mg, O and Fe. In the Galaxy, we can use absorption features in the spectra of X-ray binaries to study the size distribution, composition and crystalline structure of grains. In order to derive these properties, it is necessary to acquire a database of detailed extinction cross sections models, that reflects the composition of the dust in the interstellar medium. We present the extinction profiles of a set of newly acquired measurements of 14 dust analogues at the Soleil Synchrotron facility in Paris, where we focus on silicates and the Si-K edge in particular, which is modelled with unprecedented accuracy. These models are used to analyse ID in the dense environments of the Galaxy.
We present a new experimental setup called AROMA (The Aromatic Research of Organics with Molecular Analyzer) based on the use of laser mass spectrometry techniques. We demonstrate the potential of AROMA for the analysis of meteoritic samples and cosmic dust analogues. Tens of peaks are identified in the mass spectra with notable discrepancies across the different samples. These discrepancies provide clues on the chemical history of each sample and are not a bias of our analysis. A double bound-equivalent (DBE) method is applied to sort the detected carbonaceous molecules into families of compounds. It reveals in addition of polycyclic aromatic hydrocarbons, the presence of other populations such as mixed aromatic-aliphatic species and carbon clusters.
The Sun's atmosphere increases in temperature from 6000 degrees at the surface to over a million degrees at heights of a few thousand kilometers. This surprising temperature increase is still an active area of scientific study, but is generally thought to be driven by the dynamics of the Sun's magnetic field. The combination of a 2-to-3 order of magnitude temperature range and a low plasma density makes the solar atmosphere perhaps the best natural laboratory for the study of ionized atoms. Atomic transitions at ultraviolet (UV) and X-ray wavelength regions generally show no optical depth effects, and the lines are not subject to the interstellar absorption that affects astronomical sources. Here I highlight the importance of atomic data to modeling UV and X-ray solar spectra, with a particular focus on the CHIANTI atomic database. Atomic data needs and problems are discussed and future solar mission concepts presented.
The emergence of life on Earth may have its origin in organic molecules formed in the interstellar medium. Molecules with amide and isocyanate groups resemble structures found in peptides and nucleobases and are necessary for their formation. Their formation is expected to take place in the solid state, on icy dust grains, and is studied here by far-UV irradiating a CH4:HNCO mixture at 20 K in the laboratory. Reaction products are detected by means of infrared spectroscopy and temperature programmed desorption - mass spectrometry. Various simple amides and isocyanates are formed, showing the importance of ice chemistry for their interstellar formation. Constrained by experimental conditions, a reaction network is derived, showing possible formation pathways of these species under interstellar conditions.
The laboratories at the Centre for Astrochemical Studies at the Max Planck Institute for Extraterrestrial Physics are devoted to spectroscopic studies of molecules of astrophysical relevance. In particular, in this paper we report on the two experiments that can produce and probe unstable molecules, like radicals and ions.
PAH clusters are one candidate species for the interstellar “very small grains” or “VSGs”, i.e., dust grains small enough to be stochastically heated and contribute to the aromatic infrared emission bands (AIBs). This possibility motivated laboratory experiments on the infrared spectroscopy of PAH clusters using matrix isolation spectroscopy. The spectral shifts due to PAH clustering in argon matrices provide clues for the AIB contribution from PAH clusters in the interstellar medium. Here we review results from a number of small PAH species, extrapolation to the much larger PAHs believed to be present in the interstellar medium, and the implications for a PAH cluster contribution to the VSG population.
Using a cold plasma reactor in which we inject an organosilicon molecular precursor, we investigate chemical mechanisms that can be involved in dust formation in evolved stars. By injecting metal atoms into the gas-phase, we investigate the role of metals on dust composition. We show the formation of composite particles made of pure metal (silver) nanoparticles embedded in an organosilicon dust. We study the impact of oxygen and show that it can inhibit dust formation, likely through the destruction of nucleation seeds.
The recent calculations of atomic data for ions of astrophysical interest are reviewed with a focus on work performed in Cambridge. The calculations have been benchmarked against high-resolution laboratory and astrophysical spectra. A framework for assessing uncertainties in atomic data has also been developed. Long-standing discrepancies in predicted spectral line intensities have been resolved, and a significant number of levels in coronal ions have finally been identified, improving the modelling of the extreme-ultraviolet and soft X-ray spectral regions. Recent improvements based on collisional-radiative modelling are presented. They are relevant for the modelling of satellite lines in the X-rays and for solving the long-standing problems in the chromosphere-corona transition in stellar atmospheres.
Resolved emission from gas-phase methanol can reveal the abundance and distribution of the comet-forming ice reservoir in protoplanetary disks. ALMA Cycle 4 observations of four transitions of gas-phase methanol in TW Hya allow the first model-independent determination of the rotational temperature of methanol in a prototoplanetary disk. The data confirm that the methanol is rotationally cold (Trot < 50 K), and well constrain the column density to 2 × 1012 cm−2. Astrochemical models will constrain the chemical origin of methanol in TW Hya.
Dust particles covered by icy mantles play a crucial role in the formation of molecules in the Interstellar Medium (ISM). These icy mantles are mainly composed of water but many other chemical species are also contained in these ices. These compounds can diffuse and meet each other to react. It is through these surface reactions that new saturated species are formed. Photodissociation reactions are also thought to play a crucial role in the formation of radical species. Complex organic molecules are formed through an intricated network of photodissociation and surface reactions.
Both type of reactions release energy. Surface reactions are typically exothermic by a few eV, whereas photodissociation reactions are triggered by the absorption of a UV photon, resulting in the formation of highly excited products. The excited reaction products can apply this energy for desorption or diffusion, making products more mobile than predicted when considering only thermal hopping. The energy could further lead to annealing or deformation of the ice structure.
Here we would like to quantify the relative importance of these different energy dissipation routes. For this we performed thousands of Molecular Dynamics simulations for three different species (CO2, H2O and CH4) on top of a water ice surface. We consider different types of excitation such as translational, rotational, and/or vibrational excitation. The applied substrate is an amorphous solid water surface (ASW).
High-resolution stellar spectra are important tools for studying the chemical evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Large amounts of data have been accumulating, in particular in the optical and infrared wavelength regions. The observed spectral lines are interpreted using model spectra that are calculated based on transition data for numerous species, in particular neutral and singly ionized atoms. We rely heavily on the continuous activities of laboratory astrophysics groups that produce high-quality experimental and theoretical atomic data for the relevant transitions. We give examples for the precision with which the chemical composition of stars observed by different surveys can be determined, and discuss future needs from laboratory astrophysics.
We present ALMA observations of four different molecular species in showcasing their potential as tracers of physical and chemical conditions in planet forming Herbig Ae disks.
The Wootton Center for Astrophysical Plasma Properties (WCAPP) is a new center focusing on the spectroscopic properties of stars and accretion disks using “at-parameter” experiments. Currently, these experiments use the X-ray output of the Z machine at Sandia National Laboratories — the largest X-ray source in the world — to heat plasmas to the same conditions (temperature, density, and radiation environment) as those observed in astronomical objects. The experiments include measuring (1) density-dependent opacities of iron-peak elements at solar interior conditions, (2) spectral lines of low-Z elements at white dwarf photospheric conditions, (3) atomic population kinetics of neon in a radiation-dominated environment, and (4) resonant Auger destruction (RAD) of silicon at conditions found in accretion disks around supermassive black holes. In particular, we report on recent results of our experiments involving helium at white dwarf photospheric conditions. We present results showing disagreement between inferred electron densities using the Hβ line and the He I 5876 Å line, most likely indicating incompleteness in our modeling of this helium line.
The pore structure of vapour deposited ASW is poorly understood, despite its importance to fundamental processes such as grain chemistry, cooling of star forming regions, and planet formation. We studied structural changes of vapour deposited D2O on intra-molecular to 30 nm length scales at temperatures ranging from 18 to 180 K and observed enhanced mobility from 100 to 150 K. An Arrhenius type model describes the loss of surface area and porosity with a common set of kinetic parameters. The low activation energy (428 K) is commensurate with van der Waals forces between nm-scale substructures in the ice. Our findings imply that water porosity will always change with time, even at low temperatures.
Accurate atomic data for line wavelengths, energy levels, line broadening such as hyperfine structure and isotope structure, and f-values, particularly for the line rich iron group elements, are needed for stellar astrophysics applications, and examples of recent measurements are given. These atomic data are essential for determination of elemental abundances in astronomical objects. With modern facilities, telescopes and spectrographs, access to underexplored regions (IR, UV, VUV), and improved stellar atmosphere models (3D, NLTE), and extremely large datasets, astronomers are tackling problems ranging from studying Galactic chemical evolution, to low mass stars and exoplanets. Such advances require improved accuracy and completeness of the atomic database for analyses of astrophysical spectra.
The surfaces of most of the atmosphereless solar system bodies are referred to as regolith or layers of usually loosely connected fragmentary debris, produced by meteorite impacts. Measurement of light scattered from such surfaces provide information about the composition and structure of the surface. In the present work, the effect of porosity and particle size, on reflectance is studied for regolith like samples. For modelling the experimental data Hapke 2008 is used and found to be in good agreement with laboratory data. From the present study, it can be concluded that the physical properties of a regolith, such as porosity, particle size etc are effectively represented by albedo.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
Cyclopropenylidene,, is a simple hydrocarbon, ubiquitous in astrophysical gases, and possessing a permanent electric dipole moment. Its readily observed multifrequency rotational transitions make it an excellent probe for the physics and history of interstellar matter. The collisional properties of with He are presented here. We computed the full Potential Energy Surfaces, and we perform quantum scattering in order to provide rates of quenching and excitation for low to medium temperature regimes. We discuss issues with the validity of the usual Local Thermodynamical Equilibrium assumption, and also the intricacies of the spectroscopy of an asymmetric top. We present the wide range of actual critical densities, as recently observed.
The James Webb Space Telescope (JWST) is expected to be launched in 2021. The JWST’s science instruments will provide high quality spectra acquired in the line of sight to young stellar objects whose interpretation will require a robust database of laboratory data. With this in mind, an experimental work is in progress in the Laboratory for Experimental Astrophysics in Catania to study the profile (shape, width, and peak position) of the main infrared bands of molecular species expected to be present in icy grain mantles. Our study also takes into account the modifications induced on icy samples by low-energy cosmic ray bombardment and by thermal processing. Here we present some recent results on deuterium hydrogen monoxide (HDO), N-bearing species, and carbon dioxide (CO2).
The multi-photon photodissociation (MPD) action spectrum of the coronene cation $$({{\rm{C}}_{24}}{\rm{H}}_{12}^ + )$$ has been measured as a function of storage time up to 60 s in the cryogenic electrostatic storage ring DESIREE. These measurements reveal not only the intrinsic absorption profile of isolated coronene cations, but also the rate at which hot-band absorptions are quenched by radiative cooling. The cooling rate is interpreted using a Simple Harmonic Cascade model of infrared vibrational emission.