We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Active Galactic Nuclei (AGN) are objects in which a supermassive black hole is fed by gas and, as this generates energy, can ionise the environment and interact with it by jets and winds. This work is focused on the processes of feeding and feedback in the nucleus of NGC 613. This object is a case in which both phenomena can be studied in some detail. The kinematics and morphology of the molecular gas trace the feeding process while the ionization cone, seen in [O iii]λ5007 and soft X-rays, as well as the radio jet and wind/outflows are associated with feedback processes. In addition, we see 10 HII regions, associated with nuclear and circumnuclear young stellar populations, dominant in the optical, that makes the analysis complicated, though more interesting. For all these phenomena, NGC 613 nucleus is a vibrant example of the interplay between the AGN and the host galaxy.
We report the results from our ongoing pilot investigation of the use of deep learning techniques for forecasting the state of turbulent flows onto black holes. Deep neural networks seem to learn well black hole accretion physics and evolve the accretion flow orders of magnitude faster than traditional numerical solvers, while maintaining a reasonable accuracy for a long time.
We summarize here some of the results reviewed recently by Sanchez (2020) comprising the advances in the comprehension of galaxies in the nearby universe based on integral field spectroscopic galaxy surveys. In particular we explore the bimodal distribution of galaxies in terms of the properties of their ionized gas, showing the connection between the star-formation (quenching) process with the presence (absence) of molecular gas and the star-formation efficiency. We show two galaxy examples that illustrates the well known fact that ionization in galaxies (and the processes that produce it), does not happen monolitically at galactic scales. This highlight the importance to explore the spectroscopic properties of galaxies and the evolutionary processes unveiled by them at different spatial scales, from sub-kpc to galaxy wide.
The galaxy Mrk 590 is one of the few known ‘changing-look’ Active Galactic Nuclei (AGN) to have transitioned between states twice, having just increased its flux after a period of ˜10 years of low activity. In addition to the increase in flux, the optical broad emission lines have reappeared but show a different profile than what was observed before they disappeared. The gas motions in the host galaxy of this changing-look AGN show outflows and dynamical structures able to drive gas to the nucleus, suggesting an interplay between inflow and outflow in the centre of the galaxy.
We present an update of our ongoing project to characterise the impact of radio jets on the interstellar medium (ISM). This is done by tracing the distribution, kinematics and excitation of the molecular gas at high spatial resolution using ALMA. The radio active galactic nuclei (AGN) studied are in the interesting phase of having a recently born radio jet. In this stage, the plasma jets can have the largest impact on the ISM, as also predicted by state-of-the-art simulations. The two targets we present have quite different ages, allowing us to get snapshots of the effects of radio jets as they grow and evolve. Interestingly, both also host powerful quasar emission, making them ideal for studying the full impact of AGN. The largest mass outflow rate of molecular gas is found in a radio galaxy () hosting a newly born radio jet still in the early phase of emerging from an obscuring cocoon of gas and dust. Although the molecular mass outflow rate is high (few hundred), the outflow is limited to the inner few hundred pc region. In a second object (), the jet is larger (a few kpc) and is in a more advanced evolutionary phase. In this object, the distribution of the molecular gas is reminiscent of what is seen, on larger scales, in cool-core clusters hosting radio galaxies. Interestingly, gas deviating from quiescent kinematics (possibly indicating an outflow) is not very prominent, limited only to the very inner region, and has a low mass outflow rate. Instead, on kpc scales, the radio lobes appear associated with depressions in the distribution of the molecular gas. This suggests that the lobes have broken out from the dense nuclear region. However, the AGN does not appear to be able, at present, to stop the star formation observed in this galaxy. These results support the idea that the effects of the radio source start in the very first phases by producing outflows which, however, tend to be limited to the kpc region. After that, the effects turn into producing large-scale bubbles which could, in the long term, prevent the surrounding gas from cooling. Thus, our results provide a way to characterise the effect of radio jets in different phases of their evolution and in different environments, bridging the studies done for radio galaxies in clusters.
We use Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU) observations of a sample of 5 bright nearby Seyfert galaxies to map their emission-line flux distributions and kinematics at a spatial resolution ranging from 110 to 280 pc. For all galaxies, the gas kinematics show two components: a rotation and an outflow component.
The aim of diagnostic diagrams is to classify galactic nuclei according to their photoionizing source using emission-line ratios, differentiating starburst regions from active galactic nuclei (AGN). However, the three traditional diagnostic diagrams can sometimes be ambiguous with regard to a single object. The main goal of the present work is to propose alternative diagnostic diagrams by using distinct combinations of emission lines ratios. We present these diagrams using data from the Sloan Digital Sky Survey. With these new diagrams, it is possible to better distinguish the ionizing source in nuclei of galaxies and also to study the parameters that are relevant when considering both kinds of objects, starbursts and AGN.
Feedback from active galactic nuclei (AGN) on their host galaxies, in the form of gas outflows capable of quenching star formation, is considered a major player in galaxy evolution. However, clear observational evidence of such major impact is still missing; uncertainties in measuring outflow properties might be partly responsible because of their critical role in comparisons with models and in constraining the impact of outflows on galaxies. Here we briefly review the challenges in measuring outflow physical properties and present an overview of outflow studies from high to low redshift. Finally, we present highlights from our MAGNUM survey of nearby AGN with VLT/MUSE, where the high intrinsic spatial resolution (down to ˜ 10 pc) allows us to accurately measure the physical and kinematic properties of ionised gas outflows.
This work focuses on understanding the formation of the first massive, passive galaxies in clusters, as a first step to the development of environmental trends seen at low redshift. Cl J1449 + 0856 is an excellent case to study this - a galaxy cluster at redshift z = 1.99 that already shows evidence of a virialised atmosphere. Here we highlight two recent results: the discovery of merger-driven star formation and highly-excited molecular gas in galaxies at the core of Cl J1449, along with the lowest-mass Sunyaev-Zel’dovich detection to date.
We imaged the galaxy NGC 7020 with Gemini and GMOS-S interference filters centered on the Hα emission line and nearby continuum in order to detect and quantify the HII regions. Among about 200 HII regions, we detected two Hα emitting plumes or arms emerging from the galactic nucleus which, together with the nuclear emission, might indicate a process of feedback from the central region.
Models for massive black holes are a key ingredient for modern cosmological simulations of galaxy formation. The necessity of efficient AGN feedback in these simulations makes it essential to model the formation, growth and evolution of massive black holes, and parameterize these complex processes in a simplified fashion. While the exact formation mechanism is secondary for most galaxy formation purposes, accretion modeling turns out to be crucial. It can be informed by the properties of the high redshift quasars, accreting close to their Eddington limit, by the quasar luminosity function at peak activity and by low-redshift scaling relations. The need for halo-wide feedback implies a feedback-induced reduction of the accretion rate towards low redshift, amplifying the cosmological trend towards lower accretion rates at low redshift.
We employ optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) combined with X-ray and radio data to study the highly-ionized gas (HIG) phase of the feedback in a sample of five local nearby Active Galactic Nuclei (AGN). Thanks to the superb field of view and sensitivity of MUSE, we found that the HIG, traced by the coronal line [Fe vii] λ6089, extends to scales not seen before, from 700 pc in Circinus and up to ∼2 kpc in NGC 5728 and NGC 3393. The gas morphology is complex, following closely the radio jet and the X-ray emission. Emission line ratios suggest gas excitation by shocks produced by the passage of the radio jet. This scenario is further supported by the physical conditions derived for the HIG, stressing the importance of the mechanical feedback in AGN with low-power radio jets.
The evolution of the structural and kinematic properties of early-type galaxies (ETGs), their scaling relations, as well as their stellar metallicity and age contain precious information on the assembly history of these systems. We present results on the evolution of the stellar mass-velocity dispersion relation of ETGs, focusing in particular on the effects of some selection criteria used to define ETGs. We also try to shed light on the role that in-situ and ex-situ stellar populations have in massive ETGs, providing a possible explanation of the observed metallicity distributions.
Post-starburst galaxies (PSBGs) are systems that experienced a burst followed by a rapid quenching of star formation. However, it is still unclear what causes these events and what is the environmental role in the origin of PSBGs. To address this, we analysed sizes, morphologies, ages, and metallicities of PSBGs at 0.05 ≤ z ≤ 0.1 in groups and clusters of galaxies. We find a statistically significant excess of compact PSBGs in groups compared to a control sample of passive galaxies. Satellite PSBGs in groups tend to be more compact compared to their counterparts in clusters. Additionally, the PSBGs in groups have smaller T-type values and are likely to be found in inner group regions compared to PSBGs in clusters. Our results are compatible with dissipative wet merger events being an important mechanism responsible for the origin of PSBGs in groups, but other – less dissipative – processes may be producing PSBGs in cluster environments.
We present the latest data release of the Planetary Nebulae Spectrograph Survey (PNS) of ten lenticular galaxies and two spiral galaxies. With this data set we are able to recover the galaxies’ kinematics out to several effective radii. We use a maximum likelihood method to decompose the disk and spheroid kinematics and we compare it with the kinematics of spiral and elliptical galaxies. We build the Tully- Fisher (TF) relation for these galaxies and we compare with data from the literature and simulations. We find that the disks of lenticular galaxies are hotter than the disks of spiral galaxies at low redshifts, but still dominated by rotation velocity. The mechanism responsible for the formation of these lenticular galaxies is neither major mergers, nor a gentle quenching driven by stripping or Active Galactic Nuclei (AGN) feedback.
The DIVING3D Survey (Deep Integral Field Spectrograph View of Nuclei of Galaxies) aims to observe, with high signal/noise and high spatial resolution, a statistically complete sample of southern galaxies brighter than B = 12.0 The main objectives of this survey are to study: 1) the nuclear emission line properties; 2) the circumnuclear emission line properties; 3) the central stellar kinematics and 4) the central stellar archaeology. Preliminary results of individual or small groups of galaxies have been published in 18 papers.
We review some of our recent results about the Radial Acceleration Relation (RAR) and its interpretation as either a fundamental or an emergent law. The former interpretation is in agreement with a class of modified gravity theories that dismiss the need for dark matter in galaxies (MOND in particular). Our most recent analysis, which includes refinements on the priors and the Bayesian test for compatibility between the posteriors, confirms that the hypothesis of a fundamental RAR is rejected at more than 5σ from the very same data that was used to infer the RAR.
Starbursting dust-rich galaxies are capable of assembling large amounts of stellar mass very quickly. They have been proposed as progenitors of the population of compact massive quiescent galaxies at z ˜ 2. To test this connection, we present a detailed spatially-resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ˜ 4.5. We found that the systems are undergoing minor mergers and the bulk star formation is located in extremely compact regions. On the other hand, optically-compact star forming galaxies have also been proposed as immediate progenitors of compact massive quiescent galaxies. Were they formed in slow secular processes or in rapid merger-driven starbursts? We explored the location of galaxies with respect to star-forming and structural relations and study the burstiness of star formation. Our results suggest that compact star-forming galaxies could be starbursts winding down and eventually becoming quiescent.
The role of quasar feedback in galaxy evolution remains poorly understood. Throughout this work, we explore the effects of negative feedback on star formation in quasar host galaxies, analysing two distinct populations of quasars. The first is a sample of high-redshift (z > 2) low-ionisation broad absorption line quasars (LoBALs) - a class of quasars hosting energetic mass outflows, in which we find evidence for prolific star formation (>750Mʘyr–1) exceeding that of non-BAL quasars at the same redshift. The second is a population of 207 low-redshift (z < 0.3) quasars, in which we find an enhancement in the SFRs of quasar hosts compared to the underlying galaxy population, with no quasars residing in quiescent hosts over the last 2Gyr. Overall, we find no evidence for galaxy-wide quenching in either population, rather we suggest that the dominant effect of quasar activity is to enhance star formation in the galaxy.
We present results of a multiwavelength study of the isolated dual AGN system Was 49. Observations show that the dominant component in this interacting system, Was 49a, is a spiral galaxy, while Was 49b is hosted in a dwarf galaxy located at 8 kpc from the nucleus of Was 49a, at the edge of its disk. The intriguing fact about this system is the luminosity of their corresponding AGNs. While Was 49a hosts a low luminosity Seyfert 2 with Lbol˜1043erg s–1, Was 49b has a Seyfert 2 with Lbol ˜ 1045erg s–1, in the luminosity range of Quasars. Furthermore, estimates of the black hole and host galaxy masses of Was 49b indicate a black hole significantly more massive than one would expect from scaling relations. This result is in contrast with findings that the most luminous merger-triggered AGNs are found in major mergers and that minor mergers predominantly enhance AGN activity in the primary galaxy.