We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Photoionized outflows in active galactic nuclei (AGNs) are thought to influence their circumnuclear and host galactic environment. However, the distance of the outflow with respect to the black hole is poorly constrained, which limits our understanding of the kinetic power by the outflow. Therefore, the impact of AGN outflows on their host galaxies is uncertain. If the density of the outflow is known, its distance can be derived. Density measurement via variability studies and density sensitive lines have been used, albeit not very effective in the X-ray band. Good measurements are rather demanding or challenging for the current generation of (grating) spectrometers. The next generation of spectrometers will certainly provide data with better quality and large quantity, leading to tight constraints on the location and the kinetic power of AGN outflows. This contribution summarizes the state-of-the-art in this field.
The rate coefficients, k(T= 11.7 – 64.4 K), for the gas-phase reaction between OH radicals and acetone, CH3C(O) CH3, have been measured using the pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) technique, the most suitable one to cool down gases below the freezing point without gas condensation. The experimental k(T) was found to increase as temperature was lowered and is several orders of magnitude higher for low temperature than k(300 K). No pressure dependence of k(20 K) and k(64 K) was observed, while k(50 K) at the largest gas density is twice higher than the average values found at lower gas densities. The obtained values of k(11.7 K) and k(21.1 K) were 2.45’10-10 and 1.39’10-10 cm3 molecule-1 s-1, respectively.
Experimental data showing superhydrogenation of neutral polycyclic aromatic hydrocarbons (PAHs) coronene, pentacene and pentacenequinone is presented. PAH monolayers were prepared on a highly oriented pyrolytic graphite surface and subsequently exposed to a beam of atomic hydrogen. The superhydrogenated PAH species were examined via temperature programmed desorption measurements. Stable intermediate superhydrogenation degrees as well as fully superhydrogenated species are observed and the initial reaction cross section for coronene has been determined.
HD 163296 is a young star surrounded by a planet-forming disk that shows clear signatures of dust gaps and rings; likely an indication of ongoing planet formation. We use the radiation thermochemical disk code ProDiMo to investigate the impact of dust/gas gaps on the temperature, chemistry and observables. Furthermore, we model high spatial resolution gas and dust observation of HD 163296 (ALMA/DSHARP). Our first results indicate that features in the observed radial intensity profile of the 12CO line are a consequence of the dust gaps and do not require gas depletion. Those preliminary results indicate that self-consistent modelling of the gas (chemistry, heating/cooling) and dust is necessary to accurately infer the degree of gas depletion within dust gaps. Such information is crucial to understand the processes that generate the disk substructure and their relation to planet formation.
In cosmic environments, polycyclic aromatic hydrocarbons (PAHs) strongly interact with vacuum ultraviolet (VUV) photons emitted by young stars. Trapped PAH cations ranging in size from 30 to 48 carbon atoms were irradiated by tunable synchrotron light (DESIRS beamline at SOLEIL). Their ionization and dissociation cross sections were determined and compared with TD-DFT computed photoabsorption cross sections. Evidence for radiative cooling is reported.
Spectra of exoplanets, cool stars and brown dwarfs contain features due to molecular absorptions. Modelling these requires extensive line lists which are provided by the ExoMol project. Here we report on current progress and future prospects for the project.
The aim of this work is to understand the stability and investigate the chemical evolution of formamide ice due to thermal hydrogenation at simulated interstellar conditions.
Amorphous Mg-Fe silicates are produced from microwave-dried sol-gels and their thermal crystallisation is studied via in situ synchrotron X-ray powder diffraction. Mg-pyroxene crystallised to forsterite, enstatite and cristobalite. The inclusion of 10% Fe formed only forsterite at much higher temperature, while pure Mg-olivine crystallised at a lower temperature than Mg-pyroxene. Cristobalite is observed as a high-temperature crystallite in the pure-Mg compositions. Crystallisation activation energies are derived and discussed in relation to protoplanetary disks.
UV irradiation of ices plays an important role in different inter- and circumstellar environments. Following the absorption of UV photons in ice, two processes compete: photodesorption and photodissociation/chemistry. From an experimental point of view it is very hard to discriminate between photodesorption and photodissociation (and resulting photochemistry). In this work we present our first attempts to distinguish both effects. The performance is demonstrated on the example of CO-ice, known not to dissociate upon UV irradiation, and CH4-ice that does fragment.
Stellar winds of Asymptotic Giant Branch (AGB) stars are responsible for the production of ∼85% of the gas molecules in the interstellar medium (ISM), and yet very few of the gas phase rate coefficients under the relevant conditions (10 – 3000 K) needed to model the rate of production and loss of these molecules in stellar winds have been experimentally measured. If measured at all, the value of the rate coefficient has often only been obtained at room temperature, with extrapolation to lower and higher temperatures using the Arrhenius equation. However, non-Arrhenius behavior has been observed often in the few measured rate coefficients at low temperatures. In previous reactions studied, theoretical simulations of the formation of long-lived pre-reaction complexes and quantum mechanical tunneling through the barrier to reaction have been utilized to fit these non-Arrhenius behaviours of rate coefficients.
Reaction rate coefficients that were predicted to produce the largest change in the production/loss of Complex Organic Molecules (COMs) in stellar winds at low temperatures were selected from a sensitivity analysis. Here we present measurements of rate coefficients using a pulsed Laval nozzle apparatus with the Pump Laser Photolysis - Laser Induced Fluorescence (PLP-LIF) technique. Gas flow temperatures between 30 – 134 K have been produced by the University of Leeds apparatus through the controlled expansion of N2 or Ar gas through Laval nozzles of a range of Mach numbers between 2.49 and 4.25.
Reactions of interest include those of OH, CN, and CH with volatile organic species, in particular formaldehyde, a molecule which has been detected in the ISM. Kinetics measurements of these reactions at low temperatures will be presented using the decay of the radical reagent. Since formaldehyde and the formal radical (HCO) are potential building blocks of COMs in the interstellar medium, low temperature reaction rate coefficients for their production and loss can help to predict the formation pathways of COMs observed in the interstellar medium.
The mid-IR spectrum of the interstellar medium contains both aromatic and aliphatic hydrocarbon features. These are generally attributed to carbonaceous dust. The aliphatic component is of particular interest because it produces a significant 3.4 μm absorption feature. The optical depth of this feature is related to the number and type of aliphatic carbon C–H bonds in the line of sight. It is possible to estimate the column density of aliphatic carbon from quantitative analysis of the 3.4 μm interstellar feature, providing that the absorption coefficient of interstellar aliphatic hydrocarbon is known. We produced interstellar dust analogues with spectra closely matching astronomical observations. Using a combination of FTIR and 13C NMR spectroscopy, we determined an integrated absorption coefficient of the aliphatic component. The results thus obtained permit direct calibration of astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the ISM.
The starting point for the development of any astrochemical model is the knowledge of whether a molecule is present in the astrophysical environment considered, with the astronomical observations of spectroscopic signatures providing the unequivocal proof of its presence. Among the goals of astrochemistry, the detection of potential prebiotic molecules in the interstellar medium and planetary atmospheres is fundamental in view of possibly understanding the origin of life. The detection of new molecules in space requires the spectroscopic signatures (mostly, rotational transition frequencies) to be accurately determined over a large frequency range. This task is more and more often the result of a synergic interplay of experiment and theory.
The aim of this work is to explain the possible mechanism in the early Solar System, by which water-rich asteroids may have been delivered to Earth. Carbonaceous (C-type) asteroids, with a large fraction of water molecules, dominate in the outer part of the asteroid belt and the possibility of their migration toward Earth is still not well explained. In this work, we observe very efficient dynamical routes along which C-type water-bearing asteroids are delivered to Earth.
Potential routes to the formation of urea were investigated using electronic structure methods. The most likely pathways involve either the reaction of the formamide and amine radicals or involve protonated isocyanic acid as a starting point.
This brief overview stresses the importance of laboratory data and theory in analyzing astronomical observations and understanding the physical and chemical processes that drive the astrophysical phenomena in our Universe. This includes basic atomic and molecular data such as spectroscopy and collisional rate coefficients, but also an improved understanding of nuclear, plasma and particle physics, as well as reactions and photoprocesses in the gaseous and solid state that lead to chemical complexity and building blocks for life. Systematic laboratory collision experiments have provided detailed insight into the steps that produce pebbles, bricks and ultimately planetesimals starting from sub-μ-sized grains. Sample return missions and meteoritic studies benefit from increasingly sophisticated laboratory machines to analyze materials and provide compositional images on nanometer scales. Prioritization of future data requirements will be needed to cope with the increasing data streams from a diverse range of future astronomical facilities within a constrained laboratory astrophysics budget.
We assess the accuracy of various computational methods for obtaining infrared (IR) spectra of nanosized silicate dust grains directly from their atomistic structure and atomic motions. First, IR spectra for a selection of small nanosilicate clusters with a range of sizes and chemical compositions are obtained within the harmonic oscillator approximation employing density functional theory (DFT) based quantum chemical calculations. To check if anharmonic effects play a significant role in the IR spectra of these nanoclusters, we further obtain their IR spectra from finite temperature DFT-based ab initio molecular dynamics (AIMD). Finally, we also study the effect of temperature on the broadening of the obtained IR spectra peaks in larger nanosilicate grains with a range of crystallinities. In this case, less computationally costly classical molecular dynamics simulations are necessary due to the large number of atoms involved. Generally, we find that although DFT-based methods are more accurate, surprisingly good IR spectra can also be obtained from classical molecular dynamics calculations.
As observational facilities improve, providing new insights into the chemistry occurring in protoplanetary disks, it is important to develop more complete pictures of the processes that shapes the chemical evolution of materials during this stage of planet formation. Here we describe how primitive meteorites in our own Solar System can provide insights into the processes that shaped planetary materials early in their evolution around the Sun. In particular, we show how this leads us to expect protoplanetary disks to be very dynamic objects and what modeling and laboratory studies are needed to provide a more complete picture for the early chemical evolution that occurs for planetary systems.
Circumstellar dust analogues can be studied experimentally to determine their collisional behavior and their optical properties. These results affect simulations of circumstellar disks in various, substantial ways: Collision results determine how dust aggregates grow and how their aerodynamic properties change with time. This determines how solids move throughout the disk, how they accumulate, and how planetesimals might be formed. The optical properties determine the observational signature of these effects and allow us to constrain the spatial distribution of dust in disks, the sizes of the aggregates, as well as the temperature and optical depth of the dust emission. In this contribution, it is discussed how theoretical models and their predictions depend on laboratory results and what we learned about disks from high spatial resolution radio interferometry.
Increasing evidences suggest that the building blocks of Ca-Al-rich inclusions (CAIs) could have formed with the Sun, during the collapse of the parent cloud. However, determination of the relative age of CAIs relies on the homogeneous distribution of their short-lived radionuclide 26Al that is used as a chronometer. Some CAIs show evidence of 26Al/27 Al variation that is independent of decay.
We investigate the dynamical and chemical evolution of refractories from the collapsing cloud to their transport in the protoplanetary disk focusing to the predicted isotopic anomalies resulting from 26Al heterogeneities.
The interplay between the thermal properties of the dust, the isotopic zoning in the cloud and disk dynamics produce aggregates that resemble chondrites. An abrupt raise of 26Al close the center of the cloud followed by a plateau throughout the cloud best matches the observations. As a consequence, the 26Al -chronometer retains validity from the formation of canonical CAIs onward.