Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T05:29:04.475Z Has data issue: false hasContentIssue false

Density diagnostics of photoionized outflows in active galactic nuclei

Published online by Cambridge University Press:  12 October 2020

Junjie Mao*
Affiliation:
Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK email: [email protected] SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Photoionized outflows in active galactic nuclei (AGNs) are thought to influence their circumnuclear and host galactic environment. However, the distance of the outflow with respect to the black hole is poorly constrained, which limits our understanding of the kinetic power by the outflow. Therefore, the impact of AGN outflows on their host galaxies is uncertain. If the density of the outflow is known, its distance can be derived. Density measurement via variability studies and density sensitive lines have been used, albeit not very effective in the X-ray band. Good measurements are rather demanding or challenging for the current generation of (grating) spectrometers. The next generation of spectrometers will certainly provide data with better quality and large quantity, leading to tight constraints on the location and the kinetic power of AGN outflows. This contribution summarizes the state-of-the-art in this field.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Arav, N. Borguet, B., Chamberlain, C., et al. 2013, MNRAS, 436, 3286CrossRefGoogle Scholar
Crenshaw, D. M., Kraemer, S. B., & George, I. M. 2003, ARA&A, 41, 117CrossRefGoogle Scholar
Ebrero, J. Kaastra, J. S., Kriss, G. A., et al. 2016, A&A, 587, A129Google Scholar
Fabian, A. C. 2012, ARA&A, 50, 455CrossRefGoogle Scholar
Giustini, M. & Proga, D. 2019, A&A, 630, A94Google Scholar
Harrison, C. M., Costa, T. Tadhunter, C. N., et al. 2018, Nature Astron., 2, 198CrossRefGoogle Scholar
Kaastra, J. S., Raassen, A. J. J., Mewe, R., et al. 2004, A&A, 428, 57Google Scholar
Kaastra, J. S., Detmers, R. G., Mehdipour, M., et al. 2012, A&A, 539, A117Google Scholar
King, A. L., Miller, J. M., & Raymond, J. 2012, ApJ, 746, 2CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511CrossRefGoogle Scholar
Laha, S. Guainazzi, M., Dewangan, G. C., et al. 2014, MNRAS, 441, 2613CrossRefGoogle Scholar
Magorrian, J. Tremaine, S., Richstone, D., et al. 1998, ApJ, 115, 2285CrossRefGoogle Scholar
Mao, J. Kaastra, J. S., Mehdipour, M., et al. 2017, A&A, 607, A100Google Scholar
Miller, J. M., Raymond, J. Reynolds, C. S., et al. 2008, ApJ, 680, 1359CrossRefGoogle Scholar
Nandra, K. Barret, D., Barcons, X., et al. 2013, arXiv e-prints, arXiv:1306.2307Google Scholar
Netzer, H. 2015, ARA&A, 53, 365CrossRefGoogle Scholar
Nicastro, F. Fiore, F., Perola, G. C., et al. 1999, ApJ , 512, 184CrossRefGoogle Scholar
Silk, J. & Rees, M. J. 1998, A&A, 331, L1Google Scholar
Silva, C. V., Uttley, P., & Costantini, E. 2016, A&A, 596, A79Google Scholar
Smith, R. K., Abraham, M. H., Allured, R., et al. 2016, SPIE, 99054Google Scholar