Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T11:16:57.672Z Has data issue: false hasContentIssue false

The Sun: Our own backyard plasma laboratory

Published online by Cambridge University Press:  12 October 2020

Peter R. Young*
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD20771, USA Northumbria University, Newcastle-Upon-Tyne, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sun's atmosphere increases in temperature from 6000 degrees at the surface to over a million degrees at heights of a few thousand kilometers. This surprising temperature increase is still an active area of scientific study, but is generally thought to be driven by the dynamics of the Sun's magnetic field. The combination of a 2-to-3 order of magnitude temperature range and a low plasma density makes the solar atmosphere perhaps the best natural laboratory for the study of ionized atoms. Atomic transitions at ultraviolet (UV) and X-ray wavelength regions generally show no optical depth effects, and the lines are not subject to the interstellar absorption that affects astronomical sources. Here I highlight the importance of atomic data to modeling UV and X-ray solar spectra, with a particular focus on the CHIANTI atomic database. Atomic data needs and problems are discussed and future solar mission concepts presented.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Anderson, M. Appourchaux, T. Auchère, F., et al. 2019, arXiv e-prints, arXiv:1909.01183Google Scholar
Aschwanden, M. J. & Boerner, P. 2011, ApJ, 732, 81CrossRefGoogle Scholar
Badnell, N. R. 2006, ApJS, 167, 334CrossRefGoogle Scholar
Badnell, N. R., O'Mullane, M. G., Summers, H. P., et al. 2003, A&A, 406, 1151Google Scholar
Bautista, M. A. & Kallman, T. R. 2001, ApJS, 134, 139CrossRefGoogle Scholar
Beiersdorfer, P. & Träbert, E. 2018, ApJ, 854, 114CrossRefGoogle Scholar
Cheung, M. C. M., De Pontieu, B., Martnez-Sykora, J., et al. 2019a, ApJ, 882, 13CrossRefGoogle Scholar
Cheung, M. C. M., De Pontieu, B., Martnez-Sykora, J., et al. 2019b, ApJ, 882, 13CrossRefGoogle Scholar
Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, Sol. Phys., 243, 19CrossRefGoogle Scholar
Del Zanna, G. 2012, A&A, 546, A97Google Scholar
Del Zanna, G., Fernández-Menchero, L., & Badnell, N. R. 2019, MNRAS, 484, 4754CrossRefGoogle Scholar
Del Zanna, G. & Storey, P. J. 2012, A&A, 543, A144Google Scholar
Dere, K. P. 2007, A&A, 466, 771Google Scholar
Dere, K. P., Del Zanna, G., Young, P. R., Landi, E., & Sutherland, R. S. 2019, ApJS, 241, 22CrossRefGoogle Scholar
Dere, K. P., Landi, E. Mason, H. E., Monsignori Fossi, B. C., & Young, P. R. 1997, A&AS, 125, 149Google Scholar
Dudk, J. Mackovjak, Š., Dzifáková, E., et al. 2015, ApJ, 807, 123CrossRefGoogle Scholar
Dzifáková, E., Dudk, J., Kotr, P., Fárnk, F., & Zemanová, A. 2015, ApJS, 217, 14CrossRefGoogle Scholar
Ercolano, B., Young, P. R., Drake, J. J., & Raymond, J. C. 2008, ApJS, 175, 534CrossRefGoogle Scholar
Ferland, G. J., Chatzikos, M. Guzmán, F., et al. 2017, Rev. Mexicana Astron. Astrofis., 53, 385Google Scholar
Halain, J.-P., Mazzoli, A., Meining, S., et al. 2015, in , Vol. 9604, Solar Physics and Space Weather Instrumentation VI, 96040HGoogle Scholar
Jeffrey, N. L. S., Fletcher, L., & Labrosse, N. 2016, A&A, 590, A99Google Scholar
Landi, E. & Young, P. R. 2009, ApJ, 706, 1CrossRefGoogle Scholar
Maksimovic, M. Pierrard, V., & Riley, P. 1997, Geophys. Res. Lett., 24, 1151CrossRefGoogle Scholar
Mazzotta, P. Mazzitelli, G., Colafrancesco, S., & Vittorio, N. 1998, A&AS, 133, 403Google Scholar
Nikoli, D. Gorczyca, T. W., Korista, K. T., et al. 2018, ApJS, 237, 41CrossRefGoogle Scholar
Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJL, 556, L91CrossRefGoogle Scholar
Snow, B. Botha, G. J. J., Scullion, E., et al. 2018, ApJ, 863, 172CrossRefGoogle Scholar
Storey, P. J. & Zeippen, C. J. 2010, A&A, 511, A78Google Scholar
Summers, H. P. 1974, MNRAS, 169, 663CrossRefGoogle Scholar
Teriaca, L. Andretta, V. Auchère, F., et al. 2012, Experimental Astronomy, 34, 273CrossRefGoogle Scholar
Young, P. R. 2005, A&A, 439, 361Google Scholar
Young, P. R. 2009, ApJL, 691, L77CrossRefGoogle Scholar
Young, P. R. 2018, ApJ, 855, 15CrossRefGoogle Scholar
Young, P. R., Dere, K. P., Landi, E. Del Zanna, G., & Mason, H. E. 2016, J. Phys. B: At. Mol. Phys., 49, 074009CrossRefGoogle Scholar
Young, P. R., Keenan, F. P., Milligan, R. O., & Peter, H. 2018, ApJ, 857, 5CrossRefGoogle Scholar
Young, P. R. & Landi, E. 2009, ApJ, 707, 173CrossRefGoogle Scholar
Young, P. R., Landi, E., & Thomas, R. J. 1998, A&A, 329, 291Google Scholar
Yu, X. Del Zanna, G., Stenning, D. C., et al. 2018, ApJ, 866, 146CrossRefGoogle Scholar