We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present new observations of the large-scale radio emission surrounding the lenticular galaxy NGC 1534 with the Australia Telescope Compact Array and Murchison Widefield Array. We find no significant compact emission from the nucleus of NGC 1534 to suggest an active core, and instead find low-power radio emission tracing its star-formation history with a radio-derived star-formation rate of 0.38±0.03 M⊙ yr−1. The spectral energy distribution of the extended emission is well-fit by a continuous injection model with an ‘off’ component, consistent with dead radio galaxies. We find the spectral age of the emission to be 203 Myr, having been active for 44 Myr. Polarimetric analysis points to both a large-scale magneto-ionic Galactic foreground at +33 rad m−2 and a component associated with the northern lobe of the radio emission at -153 rad m−2. The magnetic field of the northern lobe shows an unusual circular pattern of unknown origin. While such remnant sources are rare, combined low- and high-frequency radio surveys with high surface-brightness sensitivities are expected to greatly increase their numbers in the coming decade, and combined with new optical and infrared surveys should provide a wealth of information on the hosts of the emission.
We investigate the interstellar medium towards seven TeV gamma-ray sources thought to be pulsar wind nebulae using Mopra molecular line observations at 7 mm [CS(1–0), SiO(1–0, v = 0)], Nanten CO(1–0) data and the Southern Galactic Plane Survey/GASS Hi survey. We have discovered several dense molecular clouds co-located to these TeV gamma-ray sources, which allows us to search for cosmic rays coming from progenitor SNRs or, potentially, from pulsar wind nebulae. We notably found SiO(1–0, v = 0) emission towards HESS J1809–193, highlighting possible interaction between the adjacent supernova remnant SNR G011.0–0.0 and the molecular cloud at d ∼ 3.7 kpc. Using morphological features, and comparative studies of our column densities with those obtained from X-ray measurements, we claim a distance d ∼ 8.6 − 9.7kpc for SNR G292.2–00.5, d ∼ 3.5 − 5.6 kpc for PSR J1418–6058 and d ∼ 1.5 kpc for the new SNR candidate found towards HESS J1303–631. From our mass and density estimates of selected molecular clouds, we discuss signatures of hadronic/leptonic components from pulsar wind nebulae and their progenitor SNRs. Interestingly, the molecular gas, which overlaps HESS J1026–582 at d ∼ 5 kpc, may support a hadronic origin. We find however that this scenario requires an undetected cosmic-ray accelerator to be located at d < 10 pc from the molecular cloud. For HESS J1809–193, the cosmic rays which have escaped SNR G011.0–0.0 could contribute to the TeV gamma-ray emission. Finally, from the hypothesis that at most 20% the pulsar spin down power could be converted into CRs, we find that among the studied pulsar wind nebulae, only those from PSR J1809–1917 could potentially contribute to the TeV emission.
Astrophysics Telescope for Large Area Spectroscopy Probe is a concept for a National Aeronautics and Space Administration probe-class space mission that will achieve ground-breaking science in the fields of galaxy evolution, cosmology, Milky Way, and the Solar System. It is the follow-up space mission to Wide Field Infrared Survey Telescope (WFIRST), boosting its scientific return by obtaining deep 1–4 μm slit spectroscopy for ∼70% of all galaxies imaged by the ∼2 000 deg2 WFIRST High Latitude Survey at z > 0.5. Astrophysics Telescope for Large Area Spectroscopy will measure accurate and precise redshifts for ∼200 M galaxies out to z < 7, and deliver spectra that enable a wide range of diagnostic studies of the physical properties of galaxies over most of cosmic history. Astrophysics Telescope for Large Area Spectroscopy Probe and WFIRST together will produce a 3D map of the Universe over 2 000 deg2, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modifications of General Relativity, and quantifying the 3D structure and stellar content of the Milky Way. Astrophysics Telescope for Large Area Spectroscopy Probe science spans four broad categories: (1) Revolutionising galaxy evolution studies by tracing the relation between galaxies and dark matter from galaxy groups to cosmic voids and filaments, from the epoch of reionisation through the peak era of galaxy assembly; (2) Opening a new window into the dark Universe by weighing the dark matter filaments using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of General Relativity using galaxy clustering; (3) Probing the Milky Way’s dust-enshrouded regions, reaching the far side of our Galaxy; and (4) Exploring the formation history of the outer Solar System by characterising Kuiper Belt Objects. Astrophysics Telescope for Large Area Spectroscopy Probe is a 1.5 m telescope with a field of view of 0.4 deg2, and uses digital micro-mirror devices as slit selectors. It has a spectroscopic resolution of R = 1 000, and a wavelength range of 1–4 μm. The lack of slit spectroscopy from space over a wide field of view is the obvious gap in current and planned future space missions; Astrophysics Telescope for Large Area Spectroscopy fills this big gap with an unprecedented spectroscopic capability based on digital micro-mirror devices (with an estimated spectroscopic multiplex factor greater than 5 000). Astrophysics Telescope for Large Area Spectroscopy is designed to fit within the National Aeronautics and Space Administration probe-class space mission cost envelope; it has a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology (we have identified a path for digital micro-mirror devices to reach Technology Readiness Level 6 within 2 yr). Astrophysics Telescope for Large Area Spectroscopy Probe will lead to transformative science over the entire range of astrophysics: from galaxy evolution to the dark Universe, from Solar System objects to the dusty regions of the Milky Way.
Electrospray ionisation has revolutionised mass spectrometry. Coupled to high mass resolution, it provides the stoichiometric formula of a lot of molecules in a mixture. The link between the mass spectrometry data and the chemical description relies on an interpretation of the measured masses. We present here the tools and tricks developed to exploit Orbitrap mass spectra. This piece of work focuses on the numerical method to assign a molecular formula to a measured mass. The problem is restrained to the solving of the Diophantine equation where the constant coefficients are stoichiometric groups. Peculiar case of a set of convenient groups is given with the chemical constraints it brings to the problem.
The goal of this contribution is to illustrate how spatially resolved spectroscopic observations of the infrared emission of UV irradiated regions, from star forming regions to the diffuse ISM, can be used to rationalize the chemical evolution of carbonaceous macromolecules in space, with the help of astrophysical models. For instance, observations with the Spitzer space telescope lead to the idea that fullerenes (including C60 can form top-down from Polycyclic Aromatic Hydrocarbons in the interstellar medium. The possibility that this process can occur in space was tested using a photochemical model which includes the key molecular parameters derived from experimental and theoretical studies. This approach allows to test the likelihood that the proposed path is realistic, but, more importantly, it allows to isolate the key physical processes and parameters that are required to capture correctly the evolution of carbonaceous molecules in space. In this specific case, we found that relaxation through thermally excited electronic states (a physical mechanism that is largely unexplored, except by few a teams) is one of the keys to model the photochemistry of the considered species. Subsequent quantum chemical studies stimulated by the (limited) astrophysical model showed that a detailed mapping of the energetics of isomerization and de-hydrogenation is necessary to understand the competition between these processes in space.
Such approaches, involving experimentalists and theoreticians, are particularly promising in the context of the upcoming JWST mission, which will provide access to the signatures of carbonaceous species in emission and in absorption at an angular resolution that will enable to reach new chemical frontiers in star and even in planet forming regions.
Most interstellar and planetary environments are suffused by a continuous flux of several types of ionizing radiation, including cosmic rays, stellar winds, x-rays, and gamma-rays from radionuclide decay. There is now a large body of experimental work showing that these kinds of radiation can trigger significant physicochemical changes in ices, including the dissociation of species (radiolysis), sputtering of surface species, and ice heating. Even so, modeling the chemical effects that result from interactions between ionizing radiation and interstellar dust grain ice mantles has proven challenging due to the complexity and variety of the underlying physical processes. To address this shortcoming, we have developed a method whereby such effects could easily be included in standard rate-equations-based astrochemical models. Here, we describe how such models, thus improved, can fruitfully be used to simulate experiments in order to better understand bulk chemistry at low temperatures.
Methanol (CH3OH) and hydroxyl (OH) radicals are two species abundant in cold and dense molecular clouds which are important for the chemistry of the interstellar medium (ISM). CH3OH is a well-known starting point for the formation of more complex organic molecules (COMs) in these molecular clouds. Thus, the reactivity of CH3OH in the gas-phase with OH may play a crucial role in the formation of species as complex as prebiotic molecules in the ISM and reliable rate coefficients should be used in astrochemical models describing low temperature reaction networks.
We present the results of an experimental study on the interaction of D atoms with Mg-rich amorphous silicates. The effects of D irradiation have been analyzed by infrared spectroscopy. The results indicate that HD forms by abstraction of hydrogen atoms chemisorbed in the hydroxyl groups of silicate grains. The formation process occurs for grain and atom temperatures relevant to photodissociation regions.
Surface reactions of radicals play important roles in the formation of complex molecules on interstellar dust grains. Under interstellar conditions, because the coverage of adsorbates on dust is significantly low, surface reactions are often limited by precedent processes, namely, the adsorption and diffusion of reactants. Therefore, to appropriately incorporate dust surface reactions into chemical models, information on the adsorption and diffusion of radicals is crucial. However, it is not easy to follow the behaviour of radicals on surfaces by conventional experimental methods. To monitor radicals on interstellar dust analogues, we have recently succeeded in applying a combination of photostimulated desorption and resonance-enhanced multiphoton ionization methods. In this paper, we briefly review our recent experiments for clarifying radical behaviour on water ice, pure solid CO and diamond-like carbon.
Episodic accretion is an important process in the evolution of young stars and their surroundings. A consequence of an episodic accretion event is a luminosity burst, which heats the protostellar environment and has a long lasting impact on the chemical evolution of the disk and envelope of young stars. We present a new model for the chemistry of episodic accretion based on the 2D radiation thermo-chemical disk code ProDiMo. We discuss the impact of an episodic accretion burst on the chemical evolution of CO and its observables. Furthermore we present a model for the outbursting source V883 Ori where we fitted available observational data to get an accurate physical structure that allows for a detailed study of the chemistry.
Recent observations revealed that there is a difference in the spatial distribution of both nitrogen and oxygen bearing species towards massive star forming regions. These differences can be explained under different temperature regimes in hot cores. In this study, we attempt to model the chemistry of few nitrogen species; namely, vinyl cyanide (CH2CHCN), ethyl cyanide (CH3CH2CN), and formamide (NH2CHO), using gas-grain chemical models. A special attention is given to the role and efficiency of surface chemistry as it is suggested to play one of the main key roles in manufacturing these species.
Thermal desorption experiments of Formamide (NH2CHO) and methylamine (CH3NH2) were performed in LERMA-Cergy laboratory to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces, and to understand their interaction with water ice. We found that more than 95 % of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate, and is released into the gas phase with a desorption energy distribution Edes = (7460 – 9380) K, measured with the best-fit pre-exponential factor A=1018 s-1. Whereas, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes =3850-8420 K) is measured with the best-fit pre-exponential factor A=1012s-1. A fraction of solid methylamine, of about 0.15 monolayer diffuses through the water ice surface towards the HOPG substrate, and desorbs later, with higher binding energies (5050-8420 K), which exceed that of the crystalline water ice (Edes =4930 K), calculated with the same pre-exponential factor A=1012 s-1.
The search for complex organic molecules in the interstellar medium (ISM) has revealed species of ever greater complexity. This search relies on the progress made in the laboratory to characterize their rotational spectra. Our understanding of the processes that lead to molecular complexity in the ISM builds on numerical simulations that use chemical networks fed by laboratory and theoretical studies. The advent of ALMA and NOEMA has opened a new door to explore molecular complexity in the ISM. Their high angular resolution reduces the spectral confusion of star-forming cores and their increased sensitivity allows the detection of low-abundance molecules that could not be probed before. The complexity of the recently-detected molecules manifests itself not only in terms of number of atoms but also in their molecular structure. We discuss these developments and report on ReMoCA, a new spectral line survey performed with ALMA toward the high-mass star-forming region Sgr B2(N).
Experimental evidence for the formation of hydrogenated fullerene molecules is presented. Films of C60 were grown on a highly oriented pyrolytic graphite (substrate) and exposed to a beam of deuterium atoms. Thermal desorption combined with mass spectrometry was used to determine the deuterated fullerene products formed, revealing a maximum degree of deuteration corresponding to C60D36. Release of D2 from the deuterated C60 film occurs at a much higher temperature than for D-saturated graphite.
VLT instruments and ALMA with their high spatial resolution have revolutionized in the past five years our view and understanding of how disks turn into planetary systems. This talk will briefly outline our current understanding of the physical processes occurring and chemical composition evolving as these disks turn into debris disks and eventually planetary systems like our own solar system. I will especially focus on the synergy between disk structure/evolution modeling and astrochemical laboratory/theoretical work to highlight the most recent advances, and open questions such as (1) how much of the chemical composition in disks is inherited from molecular clouds, (2) the relevance of snowlines for planet formation, and (3) what is the origin of the gas in debris disks and what can we learn from it. For each of the three, I will outline briefly how the combination of theory/lab astrochemistry, astrophysical models and observations are required to advance our understanding.
Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention in the astrophysical and astrochemical communities because of their ubiquitous presence in space due to their ability to survive in the harsh environmental conditions of the interstellar medium (ISM). The objective of this work is to provide gas phase, high-resolution spectroscopic data on the electronic and vibronic transitions of PAHs and their nitrogenated derivatives measured in astrophysically relevant conditions.
The Belgian Repository of fundamental Atomic data and Stellar Spectra (BRASS) aims to provide one of the largest systematic and homogeneous quality assessment to date of literature atomic data required for stellar spectroscopy. By comparing state-of-the-art synthetic spectrum calculations with extremely high-quality observed benchmark spectra, we have critically evaluated fundamental atomic data, such as line wavelengths and oscillator strengths, for thousands of astrophysically-relevant transitions found in the literature and across several major atomic data repositories. These proceedings provide a short overview of the BRASS project to date, highlighting our recent efforts to investigate and quality-assess the atomic literature data pertaining to over a thousand atomic transitions present in FGK-type stellar spectra. BRASS provides all quality assessed data, theoretical spectra, and observed spectra in a new interactive database under development at brass.sdf.org.
Ubiquitous strong mid-infrared emission bands are observed towards many objects and are attributed to interstellar Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are ionized, or even dissociate, when exposed to strong interstellar radiation fields. By means of ion trap mass spectrometry, light-induced dissociation patterns of PAH cations are measured and the mid-infrared spectroscopic signatures of the parent ion and its dissociation products are characterized. These results are then combined with density functional theory (DFT) calculations to obtain insight into the dissociation characteristics of interstellar PAHs at a molecular level.
The surfaces of interstellar and circumstellar dust grains are the sites of molecule formation, most of which, except H2, stick and form ice mantles. The study of ice evolution thus seems directly relevant for understanding our own origins, although the relation between interstellar and solar system ices remains a key question. The comparison of interstellar and solar system ices relies evidently on an accurate understanding of the composition and processes in both environments. With the accurate in situ measurements available for the comet 67P/Churyumov-Gerasimenko with the Rosetta mission, improving our understanding of interstellar ices is the more important. Here, I will address three specific questions. First, while laboratory experiments have made much progress in understanding complex organic molecule (COM) formation in the ices, the question remains, how does COM formation depend on environment and time? Second, what is the carrier of sulfur in the ices? And third, can ice absorption bands trace the processing history of the ices? Laboratory experiments, ranging from infrared spectroscopy to identify interstellar ice species, to surface experiments to determine reaction parameters in ice formation scenarios, to heating and irradiation experiments to simulate space environments, are essential to address these questions and analyze the flood of new observational data that will become available with new facilities in the next 2-10 years.
Effective Landé g-factors (geff) are fundamental quantities in order to derive stellar magnetic field intensities. The determination of geff involves both total angular momenta and Landé g-factors of the transition levels. Theoretical g-factors are generally adopted, and the corresponding geff, often quite different from the one obtained in laboratory, affects the accuracy on magnetic field strength measurements. In this work we discuss a method to experimentally determine geff for highly ionised species, based on high resolution spectropolarimetry applied to Electron Cyclotron Resonance laboratory plasmas.