Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T18:55:07.527Z Has data issue: false hasContentIssue false

Laboratory plasmas for high-energy astrophysics: A method to measure effective Landé g-factors

Published online by Cambridge University Press:  12 October 2020

Marina Giarrusso*
Affiliation:
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Effective Landé g-factors (geff) are fundamental quantities in order to derive stellar magnetic field intensities. The determination of geff involves both total angular momenta and Landé g-factors of the transition levels. Theoretical g-factors are generally adopted, and the corresponding geff, often quite different from the one obtained in laboratory, affects the accuracy on magnetic field strength measurements. In this work we discuss a method to experimentally determine geff for highly ionised species, based on high resolution spectropolarimetry applied to Electron Cyclotron Resonance laboratory plasmas.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

† The author acknowledges the 5th Nat. Comm. of INFN supporting the grant MAPS3D.

References

Bruhweiler, F. C. 1992, Highlights of Astronomy, 9, 553CrossRefGoogle Scholar
Byrne, J. P. 2012, eprint arXiv:1202.4005Google Scholar
Gammino, S. Celona, L., Mascali, D. Castro, G. Torrisi, G., Neri, L., Mazzaglia, M., Sorbello, G., Leonardi, O., Allegra, L., Calabrese, G., Chines, F., Gallo, G., & Passerello, S. 2017, J. Instrum., 12, P07027CrossRefGoogle Scholar
Geller, R. 1996, Electron cyclotron resonance ion sources and ECR plasmas, Bristol: Inst. of Phys.Publ.Google Scholar
Giarrusso, M., Avila, G., Del Zanna, G., Leone, F., Munari, M., Castro, G., Celona, L., Gammino, S., Mascali, D., Mazzaglia, M., & Naselli, E. 2018, J. Instrum., 13, C11020CrossRefGoogle Scholar
Giarrusso, M. 2019, Il Nuovo Cimento C, 42, 227Google Scholar
Gratton, R. G., Bonanno, G. Bruno, P. Calí, A., Claudi, R. U., Cosentino, R., Desidera, S., Farisato, G., Martorana, G., Rebeschini, M., Scuderi, S., & Timpanaro, M. C. 2001, Exp. Astron., 12, 107CrossRefGoogle Scholar
Kupka, F. Piskunov, N., Ryabchikova, T. A., Stempels, H. C., & Weiss, W. W. 1999, A&AS, 138, 119Google Scholar
Kurucz, R. L. 2005, MSAIS 8, 14Google Scholar
Landi Degl'Innocenti, E. 1982, Solar Physics, 77, 285CrossRefGoogle Scholar
Landi Degl'Innocenti, E. & Landolfi, M. 2004, Polarization in Spectral Lines, Astrophysics and Space Science Library, Kluwer Academic Publishers, Dordrecht, 307Google Scholar
Leone, F. Bruno, P., Cali, A. Claudi, R. Cosentino, R., Gentile, G., Gratton, R., & Scuderi, S. 2003, SPIE, 4843, 465Google Scholar
Leone, F. Scalia, C., Gangi, M. Giarrusso, M. Munari, M., Scuderi, S., Trigilio, C., & Stift, M. J. 2017, ApJ, 848, 107Google Scholar
Leto, P. Trigilio, C., Buemi, C. S., Umana, G., & Leone, F. 2006, A&A, 458, 831Google Scholar
Mascali, D. Castro, G., Altana, C. Caliri, C. Mazzaglia, M., Romano, F. P., Leone, F., Musumarra, A., Naselli, E., Reitano, R., Torrisi, G., Celona, L., Cosentino, L. G., Giarrusso, M., & Gammino, S. 2017, J. Instrum., 12, C12047CrossRefGoogle Scholar
Mathys, G. 1990, A&A, 236, 527Google Scholar
Nakagawa, T. 2014, Rev. Sci. Instrum., 85, 02A935CrossRefGoogle Scholar