Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T06:21:27.906Z Has data issue: false hasContentIssue false

Radiation chemistry in astrochemical models: From the laboratory to the ISM

Published online by Cambridge University Press:  12 October 2020

Christopher N. Shingledecker
Affiliation:
Zentrum für astrochemische Studien, Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, 85748 Garching bei München, Germany emails: [email protected], [email protected], [email protected] Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany email: [email protected]
Alexei Ivlev
Affiliation:
Zentrum für astrochemische Studien, Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, 85748 Garching bei München, Germany emails: [email protected], [email protected], [email protected]
Johannes Kästner
Affiliation:
Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany email: [email protected]
Eric Herbst
Affiliation:
Department of Chemistry, University of Virginia, McCormick Road, PO Box 400319, Charlottesville, VA 22904, USA email: [email protected] Department of Astronomy, University of Virginia, 530 McCormick Rd, Charlottesville, VA 22904, USA
Paola Caselli
Affiliation:
Zentrum für astrochemische Studien, Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, 85748 Garching bei München, Germany emails: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most interstellar and planetary environments are suffused by a continuous flux of several types of ionizing radiation, including cosmic rays, stellar winds, x-rays, and gamma-rays from radionuclide decay. There is now a large body of experimental work showing that these kinds of radiation can trigger significant physicochemical changes in ices, including the dissociation of species (radiolysis), sputtering of surface species, and ice heating. Even so, modeling the chemical effects that result from interactions between ionizing radiation and interstellar dust grain ice mantles has proven challenging due to the complexity and variety of the underlying physical processes. To address this shortcoming, we have developed a method whereby such effects could easily be included in standard rate-equations-based astrochemical models. Here, we describe how such models, thus improved, can fruitfully be used to simulate experiments in order to better understand bulk chemistry at low temperatures.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baragiola, R. A., Atteberry, C. L., Bahr, D. A., & Jakas, M. M. 1999, Nuc. Inst. Meth. B, 157, 1 Google Scholar
Garrod, R. T. 2013, ApJ, 765, 60 CrossRefGoogle Scholar
Gomis, O., Leto, G., & Strazzulla, G. 2004, A&A, 420, 405 Google Scholar
Greenberg, J. M. & Yencha, A. J. 1973, in: Greenberg, J. M. & van de Hulst, H. (eds.), Interstellar Dust and Related Topics, Proc. IAU Symposium No. 52 (Albany: SUNY), p. 369CrossRefGoogle Scholar
Rothard, H., Bomaracka, A., Boduch, P., Palumbo, M. E., Strazzulla, G., da Silveira, E. F., & Dartois, E. 2017, J. Phys. B, 50, 6 CrossRefGoogle Scholar
Shingledecker, C. N., Vasyunin, A., Herbst, E., & Caselli, P. 2019, ApJ, 876, 2 CrossRefGoogle Scholar