Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T16:24:31.117Z Has data issue: false hasContentIssue false

Planet forming disks, debris disks and the Solar System

Published online by Cambridge University Press:  12 October 2020

Inga Kamp*
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

VLT instruments and ALMA with their high spatial resolution have revolutionized in the past five years our view and understanding of how disks turn into planetary systems. This talk will briefly outline our current understanding of the physical processes occurring and chemical composition evolving as these disks turn into debris disks and eventually planetary systems like our own solar system. I will especially focus on the synergy between disk structure/evolution modeling and astrochemical laboratory/theoretical work to highlight the most recent advances, and open questions such as (1) how much of the chemical composition in disks is inherited from molecular clouds, (2) the relevance of snowlines for planet formation, and (3) what is the origin of the gas in debris disks and what can we learn from it. For each of the three, I will outline briefly how the combination of theory/lab astrochemistry, astrophysical models and observations are required to advance our understanding.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Antonellini, S., Bremer, J., Kamp, I., et al. 2017, A&A, 597, A72 Google Scholar
Antonellini, S., Kamp, I., Riviere-Marichalar, P., et al. 2015, A&A, 582, A105 Google Scholar
Audard, M., Ábrahám, P., Dunham, M. M., et al. 2014, in Protostars and Planets VI, ed. Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T., 387Google Scholar
Avenhaus, H., Quanz, S. P., Garufi, A., et al. 2018, ApJ, 863, 44 CrossRefGoogle Scholar
Bergin, E. A., Melnick, G. J., Gerakines, P. A., Neufeld, D. A., & Whittet, D. C. B. 2005, ApJ, 627, L33 CrossRefGoogle Scholar
Birnstiel, T., Fang, M., & Johansen, A. 2016, Space Sci. Rev., 205, 41 CrossRefGoogle Scholar
Brandeker, A., Cataldi, G., Olofsson, G., et al. 2016, A&A, 591, A27 Google Scholar
Brandeker, A., Liseau, R., Olofsson, G., & Fridlund, M. 2004, A&A, 413, 681 Google Scholar
Cataldi, G., Brandeker, A., Olofsson, G., et al. 2014, A&A, 563, A66 Google Scholar
Cataldi, G., Brandeker, A., Wu, Y., et al. 2018, ApJ, 861, 72 CrossRefGoogle Scholar
Cataldi, G., Wu, Y., Brandeker, A., et al. 2020, ApJ, 892, A99 CrossRefGoogle Scholar
Chaparro Molano, G. & Kamp, I. 2012, A&A, 537, A138 Google Scholar
Chick, K. M. & Cassen, P. 1997, ApJ, 477, 398 CrossRefGoogle Scholar
Ciesla, F. J. & Cuzzi, J. N. 2006, Icarus, 181, 178 CrossRefGoogle Scholar
Cleeves, L. I., Bergin, E. A., Alexander, C. M. O., et al. 2014, Science, 345, 1590 CrossRefGoogle Scholar
Collings, M. P., Dever, J. W., Fraser, H. J., McCoustra, M. R. S., & Williams, D. A. 2003, ApJ, 583, 1058 CrossRefGoogle Scholar
Dent, W. R. F., Wyatt, M. C., Roberge, A., et al. 2014, Science, 343, 1490 CrossRefGoogle Scholar
Donaldson, J. K., Lebreton, J., Roberge, A., Augereau, J. C., & Krivov, A. V. 2013, ApJ, 772, 17 CrossRefGoogle Scholar
Drozdovskaya, M. N., Walsh, C., van Dishoeck, E. F., et al. 2016, MNRAS, 462, 977 CrossRefGoogle Scholar
Drozdovskaya, M. N., Walsh, C., Visser, R., Harsono, D., & van Dishoeck, E. F. 2014, MNRAS, 445, 913 CrossRefGoogle Scholar
Dubrulle, B., Morfill, G., & Sterzik, M. 1995, Icarus, 114, 237 CrossRefGoogle Scholar
Dupuy, R., Bertin, M., Féraud, G., et al. 2018, Nature Astron., 2, 796 CrossRefGoogle Scholar
Eistrup, C., Walsh, C., & van Dishoeck, E. F. 2016, A&A, 595, A83 Google Scholar
Facchini, S., Birnstiel, T., Bruderer, S., & van Dishoeck, E. F. 2017, A&A, 605, A16 Google Scholar
Fayolle, E. C., Bertin, M., Romanzin, C., et al. 2013, A&A, 556, A122 Google Scholar
Furuya, K. & Aikawa, Y. 2014, ApJ, 790, 97 CrossRefGoogle Scholar
Furuya, K., Aikawa, Y., Tomida, K., et al. 2012, ApJ, 758, 86 CrossRefGoogle Scholar
Garaud, P. & Lin, D. N. C. 2007, ApJ, 654, 606 CrossRefGoogle Scholar
Greenwood, A. J., Kamp, I., Waters, L. B. F. M., Woitke, P., & Thi, W. F. 2019, A&A, 626, A6 Google Scholar
Hogerheijde, M. R., Bergin, E. A., Brinch, C., et al. 2011, Science, 334, 338 CrossRefGoogle Scholar
Jiménez-Escobar, A., Ciaravella, A., Cecchi-Pestellini, C., et al. 2018, ApJ, 868, 73 CrossRefGoogle Scholar
Kamp, I. 2019, arXiv e-prints, arXiv:1901.10862Google Scholar
Kóspál, Á., Moór, A., Juhász, A., et al. 2013, ApJ, 776, 77 CrossRefGoogle Scholar
Kral, Q. 2016, in SF2A-2016: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, 463472Google Scholar
Kral, Q. & Latter, H. 2016, MNRAS, 461, 1614 CrossRefGoogle Scholar
Kral, Q., Marino, S., Wyatt, M. C., Kama, M., & Matra, L. 2019, MNRAS, 489, 3691 Google Scholar
Krijt, S., Ciesla, F. J., & Bergin, E. A. 2016, ApJ, 833, 285 CrossRefGoogle Scholar
Lada, C. J. 1987, in IAU Symposium, Vol. 115, Star Forming Regions, ed. Peimbert, M. & Jugaku, J., 1CrossRefGoogle Scholar
Lagage, P.-O., Doucet, C., Pantin, E., et al. 2006, Science, 314, 621 CrossRefGoogle Scholar
Lecar, M., Podolak, M., Sasselov, D., & Chiang, E. 2006, ApJ, 640, 1115 CrossRefGoogle Scholar
Lee, J.-E., Lee, S., Baek, G., et al. 2019, Nature Astron., 3, 314 CrossRefGoogle Scholar
Marseille, M. G. & Cazaux, S. 2011, A&A, 532, A60 Google Scholar
Matrà, L., Panić, O., Wyatt, M. C., & Dent, W. R. F. 2015, MNRAS, 447, 3936 CrossRefGoogle Scholar
Min, M., Dullemond, C. P., Kama, M., & Dominik, C. 2011, Icarus, 212, 416 CrossRefGoogle Scholar
Moór, A., Curé, M., Kóspál, Á., et al. 2017, ApJ, 849, 123 CrossRefGoogle Scholar
Mousis, O., Gautier, D., Bockelée-Morvan, D., et al. 2000, Icarus, 148, 513 CrossRefGoogle Scholar
Mulders, G. D., Ciesla, F. J., Min, M., & Pascucci, I. 2015, ApJ, 807, 9 CrossRefGoogle Scholar
Öberg, K. I., Bottinelli, S., Jørgensen, J. K., & van Dishoeck, E. F. 2010, ApJ, 716, 825 CrossRefGoogle Scholar
Öberg, K. I., van Broekhuizen, F., Fraser, H. J., et al. 2005, ApJL, 621, L33 CrossRefGoogle Scholar
Paardekooper, D. M., Fedoseev, G., Riedo, A., & Linnartz, H. 2016, A&A, 596, A72 Google Scholar
Pagani, L., Steinacker, J., Bacmann, A., Stutz, A., & Henning, T. 2010, Science, 329, 1622 CrossRefGoogle Scholar
Pinte, C., Dent, W. R. F., Ménard, F., et al. 2016, ApJ, 816, 25 CrossRefGoogle Scholar
Pinte, C., Ménard, F., Duchêne, G., et al. 2018, A&A, 609, A47 Google Scholar
Podio, L., Kamp, I., Codella, C., et al. 2013, ApJL, 766, L5 CrossRefGoogle Scholar
Pontoppidan, K. M. 2006, A&A, 453, L47 Google Scholar
Riviere-Marichalar, P., Barrado, D., Augereau, J. C., et al. 2012, A&A, 546, L8 Google Scholar
Roberge, A., Feldman, P. D., Weinberger, A. J., Deleuil, M., & Bouret, J.-C. 2006, Nature, 441, 724 CrossRefGoogle Scholar
Roberge, A., Kamp, I., Montesinos, B., et al. 2013, ApJ, 771, 69 CrossRefGoogle Scholar
Rocha, W. R. M., Pilling, S., de Barros, A. L. F., et al. 2017, MNRAS, 464, 754 CrossRefGoogle Scholar
Schwarz, K. R., Bergin, E. A., Cleeves, L. I., et al. 2016, ApJ, 823, 91 CrossRefGoogle Scholar
Steinacker, J., Andersen, M., Thi, W. F., et al. 2015, A&A, 582, A70 Google Scholar
Taquet, V., Furuya, K., Walsh, C., & van Dishoeck, E. F. 2016, MNRAS, 462, S99 CrossRefGoogle Scholar
Visser, R., Doty, S. D., & van Dishoeck, E. F. 2011, A&A, 534, A132 Google Scholar
Visser, R., van Dishoeck, E. F., & Black, J. H. 2009, A&A, 503, 323 Google Scholar
Willacy, K., Alexander, C., Ali-Dib, M., et al. 2015, Space Sci. Rev., 197, 151 CrossRefGoogle Scholar
Woitke, P., Kamp, I., & Thi, W.-F. 2009, A&A, 501, 383 Google Scholar