We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spectral observations in the Ly-α line have shown that atmospheric escape is variable and for the exoplanet HD189733b, the atmospheric evaporation goes from undetected to enhanced evaporation in a 1.5 years interval. To understand the temporal variation in the atmospheric escape, we investigate the effect of flares, winds, and CMEs on the atmosphere of hot Jupiter HD189733b using 3D self-consistent radiation hydrodynamic simulations. We consider four cases: first, the quiescent phase including stellar wind; secondly, a flare; thirdly, a CME; and fourthly, a flare followed by a CME. We find that the flare alone increases the atmospheric escape rate by only 25%, while the CME leads to a factor of 4 increments, in comparison to the quiescent case. We also find that the flare alone cannot explain the observed high blue-shifted velocities seen in the Ly-α. The CME, however, leads to an increase in the velocity of escaping atmospheres, enhancing the blue-shifted transit depth.
This contribution is based on the work published by (Pinzón et al. 2021) in which we computed rotation rates for a sample of 79 young stars (∼3 Myr) in a wide range of stellar masses (from T Tauri Stars to Herbig Ae/Be stars) in in the Orion Star Formation Complex (OSFC). We study whether the magnetospheric accretion scenario (MA), valid for young low mass stars, may be applied over a wide range of stellar masses of not. Under the assumption that stellar winds powered by stellar accretion are the main source for the stellar spin down, the hypothesis of an extension of MA toward higher masses seems plausible. A comparison with Ap/Bp stars suggest that HAeBes should suffer a loss of angular momentum by a factor between 12 and 80 during the first 10 Myr in order to match the magnetic Ap/Bp zone in HR diagram.
Magnetic confinement of material is observed on both high and low mass stars. On low mass stars, this confinement can be seen as slingshot prominences, in which condensations are supported several stellar radii above the surface by strong magnetic fields. We present a model for generating cooled field lines in equilibrium with the background corona, which we use to populate a model corona. We find prominence masses on the order of observationally derived values. We find two types of solutions: footpoint heavy “solar-like prominences” and summit heavy “slingshot prominences” which are centrifugally supported. These can form within the open field region i.e. embedded in the wind. We generate Hα spectra from different field structures and show that all display behaviour that is consistent with observations. This implies that the features seen in observations could be supported by a range of conditions, suggesting they would be common across rapidly rotating stars.
. In this work, we implemented a hydrodynamical solution for fast rotating stars, which leaves high values of mass-loss rates and low terminal velocities of the wind. This 1D density distribution adopts a viscosity mimicking parameter which simulates a quasi-Keplerian motion. Then, it is converted to a volumetric density considering vertical hydrostatic equilibrium using a power-law scale height, as usual in viscous decretion disk models. We calculate the theoretical hydrogen emission lines and the spectral energy distribution utilizing the radiative transfer code HDUST. Our disk-wind structures are in agreement with viscous decretions disk models.
The depletion of CO molecules is observed in infrared dark clouds. However, only few exsamples are found in pc-scale. An NH3 emission is one of good counter parts of C18O because of similar effective critical density. Our NH3 observations of a molecular filament associated with CMa OB1 or KAG 71, which is a target of Kagoshima Galactic Object survey with Nobeyama 45-m telescope by Mapping in Ammonia lines (KAGONMA) project. Although NH3 data shows similarity in morphology with infrared data suggesting no depletion, C18O in the clumps 4 and 6 are weaker than expected based on NH3 data. After examining the dissipation of the high-density gas, photodissociation, and depletion, we concluded that CO is depleted at least in the clump 4. It is a new example of depletion in pc-scale.
Radiation-driven mass-loss is an important, but still highly debated, driver for the evolution of massive stars. Current massive star evolution models rely on the theoretical prediction that low luminosity massive stars experience a sudden increase in mass loss below a stellar effective temperature of about 20 000 K. However, novel radiation-driven mass-loss rate predictions show no such bi-stability jump, which effects the post main-sequence evolution of massive stars. The ULLYSES data set provides a unique opportunity to investigate the theoretical bi-stability jump dichotomy and may help to assess the existence of the bi-stability jump in massive star winds. By utilising UV spectra from ULLYSES combined with X-shooter optical data we obtain empirical mass-loss rate constraints, that are no longer degenerate to the effects of wind clumping, and derive novel empirical constraints on the mass-loss behavior across the temperature range of the bi-stability jump. Current preliminary results do not show a clear presence of a bi-stability jump.
We use archival WISE and Spitzer photometry to derive optical emission line fluxes for a sample of distant quasars at z∼6. We find evidence for exceptionally high equivalent width [OIII] emission (rest-frame EW∼400Å) similar to that inferred for star-forming galaxies at similar redshifts. The median Hα and Hβ equivalent widths are derived to be ∼400Å and ∼100Å respectively, and are consistent with values seen among quasars in the local Universe, and at z ∼ 2. After accounting for the contribution of photoionization in the broad line regions of quasars, we suggest that the narrow [OIII] emission likely arises from feedback due to massive star-formation in the quasar host. Forthcoming mid-infrared spectroscopy with the James Webb Space Telescope will help constrain the physical conditions in quasar hosts further.
NGC 7293, the Helix nebula, represents one of the rare instances in which theoretical predictions of stellar evolution can be accurately tested against observations since the precise parallax distance and the velocity and proper motion of the star are well known. We present numerical simulations of the formation of the Helix PN that are fully constrained by the progenitor stellar mass, stellar evolution history, and star-interstellar medium (ISM) interaction. In the simulations, multiple bow-shock structures are formed by fragmentation of the shock front where the direct interaction of the stellar wind with the ISM takes place.
The interactions and mergers of gas rich galaxies are known to produce star formation which often leads to nuclear activity as well. The star formation is ideally mapped using FUV and NUV emission, since UV traces star formation for longer timescales compared to Hα emission. It is also emitted over a broader range of stellar masses in galaxies. In this study we present FUV and NUV observations of merging and interacting galaxies in our nearby universe conducted using the UVIT. We present the example of a merging system MRK212 that has dual AGN and the triple AGN system NGC7733-7734. The UV emission is associated with the tidal arms, individual nuclei, resonance rings, nuclear spirals as well as AGN/stellar feedback. We also find that radio emission is often closely associated with the UV emission, arising from both star formation as well as AGN activity, and perhaps kpc-scale AGN feedback. We find that a comparison of optical IFU imaging with FUV in NGC7733-7734 reveals unique properties associated with the interaction including the third AGN buried in a tidal arm.
In the standard cosmological model of galaxy evolution, mergers and interactions play a fundamental role in shaping galaxies. Galaxies that are currently isolated are thus interesting, allowing us to identify how internal or external processes impact galactic structure. However, current observational limits may be obscuring crucial information in the low-mass or low-brightness regime. We use the AMIGA catalog of isolated galaxies to explore the impact of different factors on the structure of these galaxies. In particular, we study the type of disk break based on the degree of isolation and the presence of interactions which are only detectable in the ultra-low surface brightness regime. We present the first results of an extensive observational campaign of ultra-deep optical imaging targeting a sample of 25 low-redshift (z < 0.035) isolated galaxies. The nominal surface brightness limits achieved are comparable to those to be obtained in the 10-year LSST coadds ( mag arcsec−2; 3σ ; 10” × 10”). We find that isolated galaxies have a considerably higher fraction of purely exponential disk profiles and a lower presence of up-bending breaks than field or cluster galaxies. Our extreme imaging depth allows us to detect the presence of previously unreported interactions with minor companions in some of the galaxies in our sample (∼40% of the galaxies show signs of interaction). The results of our work fit with the general framework of galactic structure in which up-bending breaks (Type III) would be produced by mergers and down-bending breaks (Type II) due to a threshold in star formation that would tend to become single exponential disk (Type I) in case of cessation or decrease of star formation.
To study the role of H i content in galaxy interactions, we select galaxy pairs and control galaxies from the SDSS-IV MaNGA IFU survey, adopting kinematic asymmetry as a new effective indicator to describe the merger stage. With archival data from the HI-MaNGA survey and new observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we investigate the differences in H i gas fraction (fH i), star formation rate (SFR), and H i star formation efficiency (SFEH i) between pairs and controls. Our results suggest that on average the H i gas fraction of major-merger pairs is marginally decreased by ∼ 15% relative to isolated galaxies, and paired galaxies during pericentric passage show weakly decreased fH i (−0.10 ± 0.05 dex), significantly enhanced SFR (0.42 ± 0.11 dex), and SFEH i (0.48 ± 0.12 dex). We propose the marginally detected H i depletion may originate from the gas consumption in fueling the enhanced H2 reservoir of galaxy pairs.
Stars interact with their planets through gravitation, radiation, and magnetic fields. Although magnetic activity decreases with time, reducing associated high-energy (e.g., coronal XUV emission, flares), stellar winds persist throughout the entire evolution of the system. Their cumulative effect will be dominant for both the star and for possible orbiting exoplanets, affecting in this way the expected habitability conditions. However, observations of stellar winds in low-mass main sequence stars are limited, which motivates the usage of models as a pathway to explore how these winds look like and how they behave. Here we present the results from a grid of 3D state-of-the-art stellar wind models for cool stars (spectral types F to M). We explore the role played by the different stellar properties (mass, radius, rotation, magnetic field) on the characteristics of the resulting magnetized winds (mass and angular momentum losses, terminal speeds, wind topology) and isolate the most important dependencies between the parameters involved. These results will be used to establish scaling laws that will complement the lack of stellar wind observational constraints.
Mass loss plays a key role in the evolution of massive stars and their environment. High mass-loss events are traced by complex circumstellar ejecta and intricate line profiles across the upper Hertzsprung-Russell diagram for massive stars in different evolutionary stages. The basic physics of radiation-driven stellar wind for hot stars is well understood. However, the driving mechanisms and related instabilities for their enhanced mass-loss episodes and the driving mechanisms for the mass loss of cool stars are still debated. In this review, the mass-loss characteristics and the possible mechanisms will be surveyed for an observational set of prominent massive stellar populations that experience outflows, strong stellar winds, and periods of enhanced and eruptive mass loss; massive young stellar objects, OB-type stars, red supergiants, warm hypergiants, luminous blue variables, and Wolf-Rayet stars.
The stellar wind from low-mass stars affects the evolution of the whole stellar system in various ways. To better describe its quantitative contributions, we need to understand the theoretical aspects of stellar wind formation. Here, we present an overview of the theoretical models of stellar wind. The classical thermally-driven wind model fails in reproducing the anti-correlation between the coronal temperature and wind speed observed in the solar wind, thus needs modification with magnetic-energy injection. Specifically, energy input by Alfvén wave is likely to be important. Indeed, a number of solar-wind observations are well reproduced by the Alfvén-wave models, although it could be risky to directly apply the Alfvén-wave models to general low-mass stars. For a better description of stellar wind from low-mass stars with a variety of activity levels, the hybrid model would be better, in which we consider the effect of flux emergence as well as Alfvén wave.
The CO-to-H2 conversion factor (αCO) is crucial for accurate estimation of the amount and properties of molecular gas. However, αCO is known to vary with environmental conditions, and previous kpc-scale studies have revealed lower αCO in the centers of some barred galaxies, including NGC 3351, 3627, and 4321. We present ALMA Band 3, 6, and 7 observations toward the inner ∼2 kpc of these galaxies tracing 12CO, 13CO, and C18O lines at ∼100 pc resolution. We show that dynamical effects resulting from turbulence/shear can lead to substantially lower αCO in the bar-driven inflows of NGC 3351 due to lower optical depth. A clear, positive correlation between αCO and 12CO optical depth is seen in all three galaxy centers. We also find that the CO/13CO(2–1) ratio mainly traces the 12CO optical depth, and thus it may be a useful observable in predicting αCO variation in galaxy centers.
We investigated the evolution of HS Hya system’s inclination based on analysis of its light curves in the period 1964–2021. HS Hya is EA type eclipsing binary star, belonging to separate group with changing orbital inclination. We used our recent observations as well as the data from sky surveys.
Feedback from supernovae (SNe) is an essential mechanism that self-regulates the growth of galaxies. We build an SN feedback model based on high-resolution simulations of superbubble and SN-driven outflows for the physical understanding of the galaxy–CGM connection. Using an Eulerian hydrodynamic code Athena++, we find universal scaling relations for the time evolution of superbubble momentum, when the momentum and time are scaled by those at the shell-formation time. We then develop an SN feedback model utilizing Voronoi tessellation, and implement it into the GADGET3-Osaka smoothed particle hydrodynamic code. We show that our stochastic thermal feedback model produces galactic outflow that carries the metals high above the galactic plane but with weak suppression of star formation. Additional mechanical feedback further suppresses star formation. Therefore, we argue that both thermal and mechanical feedback is necessary for the SN feedback model of galaxy evolution when an individual SN bubble is unresolved.
Due to observational constraints, our detailed knowledge of stellar populations, formation, and evolution of galaxies is limited to a few dozen galaxies located in the Local Group. The Local Group of galaxies offers a unique opportunity to construct the formation histories and probe the structure and dynamics of many dwarf galaxies surrounding the Milky Way and Andromeda and of isolated dwarf galaxies. In this regard, we monitored the majority of galaxies in the Local Group, including the M33 galaxy and satellites galaxies surrounding the Milky Way and Andromeda galaxy, as well as isolated dwarf galaxies. We identified stellar populations and based on light curve analysis, the cool evolved stars pulsating in the fundamental mode were identified. In this paper, first, we will present the results we obtained for SFH and dust production rate in individual galaxies separately to answer how different types of galaxies have been formed and evolved over cosmic time. Then, we will discuss whether the mass return from dusty evolved stars can provide enough gas reservoirs to sustain the star formation or even rejuvenate the dwarf galaxy, as some seem to harbor relatively young stars.
In this invited review talk I summarize some of the recent observational advances in understanding mass loss from low-mass stars. This can take the form of a relatively steady wind, or stochastically occurring coronal mass ejections (CMEs). In recent years, there has been an expansion of observational signatures used to probe mass loss in low-mass stars. These observational tools span the electromagnetic spectrum. There has also been a resurgence of interest in this topic because of its potential impact on exoplanet space weather and habitability. The numerous recent observational and theoretical results also point to the complexities involved, rather than using simple scalings from solar understanding. This underscores the need to understand reconnection and eruption processes on magnetically active stars as a tool to putting our Sun in context.