Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T04:20:34.100Z Has data issue: false hasContentIssue false

Effect of stellar flares and coronal mass ejections on the atmospheric escape from hot Jupiters

Published online by Cambridge University Press:  16 August 2023

Gopal Hazra
Affiliation:
Dept. of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna, Austria
Aline A. Vidotto
Affiliation:
Leiden Observatory, Leiden University, NL-2300 RA Leiden, the Netherlands
Stephen Carolan
Affiliation:
School of Physics, Trinity College Dublin, Dublin 2, Ireland
Carolina Villarreal D’Angelo
Affiliation:
Instituto de Astronomía Teórica y Experimental (IATE-CONICET). Laprida 854, Córdoba, Argentina
Ward Manchester
Affiliation:
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectral observations in the Ly-α line have shown that atmospheric escape is variable and for the exoplanet HD189733b, the atmospheric evaporation goes from undetected to enhanced evaporation in a 1.5 years interval. To understand the temporal variation in the atmospheric escape, we investigate the effect of flares, winds, and CMEs on the atmosphere of hot Jupiter HD189733b using 3D self-consistent radiation hydrodynamic simulations. We consider four cases: first, the quiescent phase including stellar wind; secondly, a flare; thirdly, a CME; and fourthly, a flare followed by a CME. We find that the flare alone increases the atmospheric escape rate by only 25%, while the CME leads to a factor of 4 increments, in comparison to the quiescent case. We also find that the flare alone cannot explain the observed high blue-shifted velocities seen in the Ly-α. The CME, however, leads to an increase in the velocity of escaping atmospheres, enhancing the blue-shifted transit depth.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M., Ballester, G. E., Ferlet, R., Hébrard, G., and Mayor, M.. An extended upper atmosphere around the extrasolar planet HD209458b. Nature, 422(6928):143146, Mar 2003. doi: 10.1038/nature01448.CrossRefGoogle ScholarPubMed
Lecavelier des Etangs, A., Bourrier, V., Wheatley, P. J., Dupuy, H., Ehrenreich, D., Vidal-Madjar, A., Hébrard, G., Ballester, G. E., Désert, J. M., Ferlet, R., and Sing, D. K.. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b. A&A, 543:L4, July 2012. doi: 10.1051/0004-6361/201219363.Google Scholar
Murray-Clay, Ruth A., Chiang, Eugene I., and Murray, Norman. Atmospheric Escape From Hot Jupiters. ApJ, 693(1):23–42, Mar 2009. doi: 10.1088/0004-637X/693/1/23.CrossRefGoogle Scholar
Hazra, Gopal, Vidotto, Aline A., and Villarreal D’Angelo, Carolina. Influence of the Sun-like magnetic cycle on exoplanetary atmospheric escape. MNRAS, 496(3):4017–4031, August 2020. doi: 10.1093/mnras/staa1815.CrossRefGoogle Scholar
Carolan, S., Vidotto, A. A., Villarreal D’Angelo, C., and Hazra, G.. Effects of the stellar wind on the Ly α transit of close-in planets. MNRAS, 500(3):33823393, January 2021. doi: 10.1093/mnras/staa3431.CrossRefGoogle Scholar
Gopal Hazra, Aline A. Vidotto, Stephen Carolan, Villarreal D’Angelo, Carolina, and Manchester, Ward. The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b. MNRAS, 509(4):58585871, February 2022. doi: 10.1093/mnras/stab3271.CrossRefGoogle Scholar
Sanz-Forcada, J., Micela, G., Ribas, I., Pollock, A. M. T., Eiroa, C., Velasco, A., Solano, E., and Garca-Álvarez, D.. Estimation of the XUV radiation onto close planets and their evaporation. A&A, 532:A6, Aug 2011. doi: 10.1051/0004-6361/201116594.Google Scholar
John McCann, Ruth A. Murray-Clay, Kaitlin Kratter, and Krumholz, Mark R.. Morphology of Hydrodynamic Winds: A Study of Planetary Winds in Stellar Environments. ApJ, 873(1):89, March 2019. doi: 10.3847/1538-4357/ab05b8.CrossRefGoogle Scholar
Salz, M., Czesla, S., Schneider, P. C., and Schmitt, J. H. M. M.. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. A&A, 586:A75, February 2016. doi: 10.1051/0004-6361/201526109.Google Scholar
Kavanagh, R. D., Vidotto, A. A., Fionnagáin, D. Ó., Bourrier, V., Fares, R., Jardine, M., Helling, Ch, Moutou, C., Llama, J., and Wheatley, P. J.. MOVES - II. Tuning in to the radio environment of HD189733b. MNRAS, 485(4):4529–4538, June 2019. doi: 10.1093/mnras/stz655.CrossRefGoogle Scholar