Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:27:31.408Z Has data issue: false hasContentIssue false

On the making of a PN: the interaction of a multiple stellar wind with the ISM

Published online by Cambridge University Press:  16 August 2023

Arturo Manchado
Affiliation:
Instituto de Astrofsica de Canarias, Va Láctea S/N, E-38200 La Laguna, Tenerife, Spain Departmento de Astrofsica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain Consejo Superior de Investigaciones Cientficas, Spain
Eva Villaver
Affiliation:
Centro de Astrobiologa (CAB, CSIC-INTA), ESAC Campus Camino Bajo del Castillo, s/n, Villanueva de la Cañada, 28692, Madrid, Spain
G. García-Segura
Affiliation:
Instituto de Astronoma-UNAM, Apartado postal 877, Ensenada, 22800 Baja California, México
Luciana Bianchi
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

NGC 7293, the Helix nebula, represents one of the rare instances in which theoretical predictions of stellar evolution can be accurately tested against observations since the precise parallax distance and the velocity and proper motion of the star are well known. We present numerical simulations of the formation of the Helix PN that are fully constrained by the progenitor stellar mass, stellar evolution history, and star-interstellar medium (ISM) interaction. In the simulations, multiple bow-shock structures are formed by fragmentation of the shock front where the direct interaction of the stellar wind with the ISM takes place.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Benedict, G. F., McArthur, B. E., Napiwotzki, R., et al. 2009, AJ, 138, 1969 10.1088/0004-6256/138/6/1969CrossRefGoogle Scholar
Bianchi, L., Manchado, A., Forster, K. 2012, IAU Symp. 283, p. 308 10.1017/S1743921312011167CrossRefGoogle Scholar
González-Santamara, I., Manteiga, M., Manchado, A., et al. 2021, A&A, 656, A51. doi: 10.1051/0004-6361/202141916 CrossRefGoogle Scholar
Guerrero, M. A., & De Marco, O. 2013, A&A, 553, A126 10.1051/0004-6361/201220623CrossRefGoogle Scholar
Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, ApJ Letters, 619, L1 10.1086/426387CrossRefGoogle Scholar
Martin, D. C., et al. 2007, Nature, 448, 780 10.1038/nature06003CrossRefGoogle Scholar
Stone, J. M., Mihalas, D., & Norman, M. L. 1992, ApJS, 80, 819 10.1086/191682CrossRefGoogle Scholar
Villaver, E., Garca-Segura, , & Manchado, A. 2002a, ApJ, 571, 88010.1086/340022CrossRefGoogle Scholar
Villaver, E., Garca-Segura, G., & Manchado, A. 2003, ApJ Letters, 585, L49 10.1086/373941CrossRefGoogle Scholar
Vassiliadis, E., & Wood, P. R. 1994, ApJS, 92, 12510.1086/191962CrossRefGoogle Scholar