Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T03:19:51.408Z Has data issue: false hasContentIssue false

Stellar wind from low-mass main-sequence stars: an overview of theoretical models

Published online by Cambridge University Press:  16 August 2023

Munehito Shoda*
Affiliation:
Department of Earth and Planetary Science, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar wind from low-mass stars affects the evolution of the whole stellar system in various ways. To better describe its quantitative contributions, we need to understand the theoretical aspects of stellar wind formation. Here, we present an overview of the theoretical models of stellar wind. The classical thermally-driven wind model fails in reproducing the anti-correlation between the coronal temperature and wind speed observed in the solar wind, thus needs modification with magnetic-energy injection. Specifically, energy input by Alfvén wave is likely to be important. Indeed, a number of solar-wind observations are well reproduced by the Alfvén-wave models, although it could be risky to directly apply the Alfvén-wave models to general low-mass stars. For a better description of stellar wind from low-mass stars with a variety of activity levels, the hybrid model would be better, in which we consider the effect of flux emergence as well as Alfvén wave.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alazraki, G. & Couturier, P. 1971, A&A, 13, 380 10.1159/000175358CrossRefGoogle Scholar
Alfvén, H. 1942, Nature, 150, 405 10.1038/150405d0CrossRefGoogle Scholar
Alfvén, H. 1947, MNRAS, 107, 211 10.1093/mnras/107.2.211CrossRefGoogle Scholar
Antiochos, S. K., Mikić, Z., Titov, V. S., Lionello, R., & Linker, J. A. 2011, ApJ, 731, 112 10.1088/0004-637X/731/2/112CrossRefGoogle Scholar
Arge, C. N. & Pizzo, V. J. 2000, JGR, 105, 10465 10.1029/1999JA000262CrossRefGoogle Scholar
Bale, S. D., Badman, S. T., Bonnell, J. W., et al. 2019, Nature, 576, 237 10.1038/s41586-019-1818-7CrossRefGoogle Scholar
Bale, S. D., Drake, J. F., McManus, M. D., et al. 2022, arXiv e-prints, arXiv:2208.07932Google Scholar
Belcher, J. W. 1971, ApJ, 168, 509 10.1086/151105CrossRefGoogle Scholar
Berghmans, D., Auchère, F., Long, D. M., et al. 2021, arXiv e-prints, arXiv:2104.03382Google Scholar
Biermann, L. 1957, The Observatory, 77, 109Google Scholar
Brooks, D. H., Ugarte-Urra, I., & Warren, H. P. 2015, Nature Communications, 6, 5947 10.1038/ncomms6947CrossRefGoogle Scholar
Chandran, B. D. G. & Perez, J. C. 2019, Journal of Plasma Physics, 85, 905850409 10.1017/S0022377819000540CrossRefGoogle Scholar
Cheung, M. C. M. & Isobe, H. 2014, Living Reviews in Solar Physics, 11, 3 10.12942/lrsp-2014-3CrossRefGoogle Scholar
Cranmer, S. R. & Saar, S. H. 2011, ApJ, 741, 54 10.1088/0004-637X/741/1/54CrossRefGoogle Scholar
Cranmer, S. R. & van Ballegooijen, A. A. 2005, ApJS, 156, 265 10.1086/426507CrossRefGoogle Scholar
Cranmer, S. R. & van Ballegooijen, A. A. 2010, ApJ, 720, 824 10.1088/0004-637X/720/1/824CrossRefGoogle Scholar
Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, ApJS, 171, 520 10.1086/518001CrossRefGoogle Scholar
Crooker, N. U., Gosling, J. T., & Kahler, S. W. 2002, Journal of Geophysical Research (Space Physics), 107, 1028 Google Scholar
Daly, L., Lee, M. R., Hallis, L. J., et al. 2021, Nature Astronomy, 5, 1275 10.1038/s41550-021-01487-wCrossRefGoogle Scholar
Drake, J. F., Agapitov, O., Swisdak, M., et al. 2021, A&A, 650, A2 10.1051/0004-6361/202039432CrossRefGoogle Scholar
Edlén, B. 1943, ZA, 22, 30 10.1177/002743214303000110CrossRefGoogle Scholar
Fisk, L. A. 2003, Journal of Geophysical Research (Space Physics), 108, 1157 10.1029/2002JA009284CrossRefGoogle Scholar
Fisk, L. A. & Kasper, J. C. 2020, ApJ Letters, 894, L4 10.3847/2041-8213/ab8acdCrossRefGoogle Scholar
Fisk, L. A., Schwadron, N. A., & Zurbuchen, T. H. 1999, JGR, 104, 19765 10.1029/1999JA900256CrossRefGoogle Scholar
Gary, G. A. 2001, Solar Physics, 203, 71 10.1023/A:1012722021820CrossRefGoogle Scholar
Geiss, J., Gloeckler, G., & von Steiger, R. 1995, Space Science Reviews, 72, 49 10.1007/BF00768753CrossRefGoogle Scholar
Hansteen, V. H. & Velli, M. 2012, Space Science Reviews, 172, 89 10.1007/s11214-012-9887-zCrossRefGoogle Scholar
Harra, L. K., Sakao, T., Mandrini, C. H., et al. 2008, ApJ Letters, 676, L147 10.1086/587485CrossRefGoogle Scholar
Holzwarth, V. & Jardine, M. 2007, A&A, 463, 11 10.1051/0004-6361:20066486CrossRefGoogle Scholar
Iwai, K., Shibasaki, K., Nozawa, S., et al. 2014, Earth, Planets and Space, 66, 149 10.1186/s40623-014-0149-zCrossRefGoogle Scholar
Jacques, S. A. 1977, ApJ, 215, 942 10.1086/155430CrossRefGoogle Scholar
Jardine, M. & Collier Cameron, A. 2019, MNRAS, 482, 2853 10.1093/mnras/sty2872CrossRefGoogle Scholar
Kasper, J. C., Bale, S. D., Belcher, J. W., et al. 2019, Nature, 576, 228 10.1038/s41586-019-1813-zCrossRefGoogle Scholar
Kavanagh, R. D., Vidotto, A. A., Fionnagáin, Ó., D., et al. 2019, MNRAS, 485, 4529 10.1093/mnras/stz655CrossRefGoogle Scholar
Kawaler, S. D. 1988, ApJ, 333, 236 10.1086/166740CrossRefGoogle Scholar
Kopp, R. A. & Holzer, T. E. 1976, Solar Physics, 49, 43 10.1007/BF00221484CrossRefGoogle Scholar
Kraft, R. P. 1967, ApJ, 150, 551 10.1086/149359CrossRefGoogle Scholar
Matsumoto, T. 2021, MNRAS, 500, 4779 10.1093/mnras/staa3533CrossRefGoogle Scholar
Matsumoto, T. & Suzuki, T. K. 2012, ApJ, 749, 8 10.1088/0004-637X/749/1/8CrossRefGoogle Scholar
Matsumoto, T. & Suzuki, T. K. 2014, MNRAS, 440, 971 10.1093/mnras/stu310CrossRefGoogle Scholar
Mitani, H., Nakatani, R., & Yoshida, N. 2022, MNRAS, 512, 855 10.1093/mnras/stac556CrossRefGoogle Scholar
Parker, E. N. 1958, ApJ, 128, 664 10.1086/146579CrossRefGoogle Scholar
Parker, E. N. 1972, ApJ, 174, 499 10.1086/151512CrossRefGoogle Scholar
Parker, E. N. 1988, ApJ, 330, 474 10.1086/166485CrossRefGoogle Scholar
Perez, J. C. & Chandran, B. D. G. 2013, ApJ, 776, 124 10.1088/0004-637X/776/2/124CrossRefGoogle Scholar
Rappazzo, A. F., Matthaeus, W. H., Ruffolo, D., Servidio, S., & Velli, M. 2012, ApJ Letters, 758, L14 10.1088/2041-8205/758/1/L14CrossRefGoogle Scholar
Rappazzo, A. F., Velli, M., Einaudi, G., & Dahlburg, R. B. 2008, ApJ, 677, 1348 10.1086/528786CrossRefGoogle Scholar
Reimers, D. 1975, Memoires of the Societe Royale des Sciences de Liege, 8, 369Google Scholar
Réville, V., Velli, M., Panasenco, O., et al. 2020, ApJS, 246, 24 10.3847/1538-4365/ab4fefCrossRefGoogle Scholar
Sakao, T., Kano, R., Narukage, N., et al. 2007, Science, 318, 1585 10.1126/science.1147292CrossRefGoogle Scholar
Sakaue, T. & Shibata, K. 2021, ApJ, 919, 29 10.3847/1538-4357/ac0e34CrossRefGoogle Scholar
Sakurai, T. 1985, A&A, 152, 121 Google Scholar
Schröder, K. P. & Cuntz, M. 2005, ApJ Letters, 630, L73 10.1086/491579CrossRefGoogle Scholar
Shoda, M., Iwai, K., & Shiota, D. 2022, ApJ, 928, 130 10.3847/1538-4357/ac581eCrossRefGoogle Scholar
Shoda, M., Suzuki, T. K., Asgari-Targhi, M., & Yokoyama, T. 2019, ApJ Letters, 880, L2 10.3847/2041-8213/ab2b45CrossRefGoogle Scholar
Shoda, M., Suzuki, T. K., Matt, S. P., et al. 2020, ApJ, 896, 123 10.3847/1538-4357/ab94bfCrossRefGoogle Scholar
Shoda, M., Yokoyama, T., & Suzuki, T. K. 2018, ApJ, 853, 190 10.3847/1538-4357/aaa3e1CrossRefGoogle Scholar
Suzuki, T. K., Imada, S., Kataoka, R., et al. 2013, PASJ, 65, 98 10.1093/pasj/65.5.98CrossRefGoogle Scholar
Suzuki, T. K. & Inutsuka, S.-i. 2005, ApJ Letters, 632, L4910.1086/497536CrossRefGoogle Scholar
Suzuki, T. K. & Inutsuka, S.-I. 2006, Journal of Geophysical Research (Space Physics), 111, A06101 Google Scholar
Usmanov, A. V., Matthaeus, W. H., Goldstein, M. L., & Chhiber, R. 2018, ApJ, 865, 25 10.3847/1538-4357/aad687CrossRefGoogle Scholar
van der Holst, B., Sokolov, I. V., Meng, X., et al. 2014, ApJ, 782, 81 10.1088/0004-637X/782/2/81CrossRefGoogle Scholar
Velli, M. 1994, ApJ Letters, 432, L5510.1086/187510CrossRefGoogle Scholar
Verdini, A. & Velli, M. 2007, ApJ, 662, 669 10.1086/510710CrossRefGoogle Scholar
Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S., & Dmitruk, P. 2010, ApJ Letters, 708, L116 10.1088/2041-8205/708/2/L116CrossRefGoogle Scholar
Vidotto, A. A. 2021, Living Reviews in Solar Physics, 18, 3 10.1007/s41116-021-00029-wCrossRefGoogle Scholar
Vidotto, A. A. & Bourrier, V. 2017, MNRAS, 470, 4026 10.1093/mnras/stx1543CrossRefGoogle Scholar
Vidotto, A. A. & Cleary, A. 2020, MNRAS, 494, 2417 10.1093/mnras/staa852CrossRefGoogle Scholar
von Steiger, R., Schwadron, N. A., Fisk, L. A., et al. 2000, JGR, 105, 27217 10.1029/1999JA000358CrossRefGoogle Scholar
Wang, Y. M. 2020, ApJ, 904, 199 10.3847/1538-4357/abbda6CrossRefGoogle Scholar
Wang, Y. M. & Sheeley, N. R., J. 1990, ApJ, 355, 726 10.1086/168805CrossRefGoogle Scholar
Weber, E. J. & Davis, Leverett, J. 1967, ApJ, 148, 217 10.1086/149138CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Redfield, S., & Edelman, E. 2014, ApJ Letters, 781, L33 10.1088/2041-8205/781/2/L33CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Redfield, S., et al. 2021, ApJ, 915, 37 10.3847/1538-4357/abfda5CrossRefGoogle Scholar
Wood, B. E., Müller, H. R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ Letters, 628, L143 10.1086/432716CrossRefGoogle Scholar
Zank, G. P., Nakanotani, M., Zhao, L. L., Adhikari, L., & Kasper, J. 2020, ApJ, 903, 1 10.3847/1538-4357/abb828CrossRefGoogle Scholar