Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T22:52:53.737Z Has data issue: false hasContentIssue false

Osaka Feedback Model II: Modeling Supernova Feedback Based on High-Resolution Simulations

Published online by Cambridge University Press:  09 June 2023

Yuri Oku
Affiliation:
Theoretical Astrophysics, Department of Earth & Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan email: [email protected]
Kengo Tomida
Affiliation:
Astronomical Institute, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan
Kentaro Nagamine
Affiliation:
Theoretical Astrophysics, Department of Earth & Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan email: [email protected] Kavli IPMU (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan Department of Physics & Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4002, USA
Ikkoh Shimizu
Affiliation:
Shikoku Gakuin University, 3-2-1 Bunkyocho, Zentsuji, Kagawa, 765-8505, Japan
Renyue Cen
Affiliation:
Theoretical Astrophysics, Department of Earth & Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan email: [email protected] Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Feedback from supernovae (SNe) is an essential mechanism that self-regulates the growth of galaxies. We build an SN feedback model based on high-resolution simulations of superbubble and SN-driven outflows for the physical understanding of the galaxy–CGM connection. Using an Eulerian hydrodynamic code Athena++, we find universal scaling relations for the time evolution of superbubble momentum, when the momentum and time are scaled by those at the shell-formation time. We then develop an SN feedback model utilizing Voronoi tessellation, and implement it into the GADGET3-Osaka smoothed particle hydrodynamic code. We show that our stochastic thermal feedback model produces galactic outflow that carries the metals high above the galactic plane but with weak suppression of star formation. Additional mechanical feedback further suppresses star formation. Therefore, we argue that both thermal and mechanical feedback is necessary for the SN feedback model of galaxy evolution when an individual SN bubble is unresolved.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Dalla Vecchia, C. & Schaye, J. 2012, MNRAS, 426, 140 10.1111/j.1365-2966.2012.21704.xCrossRefGoogle Scholar
Fielding, D., Quataert, E., & Martizzi, D. 2018, MNRAS, 481, 3325 10.1093/mnras/sty2466CrossRefGoogle Scholar
Hopkins, P. F., Wetzel, A., Kereš, D., et al 2018, MNRAS, 477, 1578 10.1093/mnras/sty674CrossRefGoogle Scholar
Hu, C.-Y. 2019, MNRAS, 483, 3363 10.1093/mnras/sty3252CrossRefGoogle Scholar
Keller, B. W., Wadsley, J., Benincasa, S. M., & Couchman, H. M. P. 2014, MNRAS, 442, 3013 10.1093/mnras/stu1058CrossRefGoogle Scholar
Kim, J.-H., Abel, T., Agertz, O., et al 2014, ApJS, 210, 14 10.1088/0067-0049/210/1/14CrossRefGoogle Scholar
Kim, C.-G. & Ostriker, E. C. 2015, ApJ, 802, 99 10.1088/0004-637X/802/2/99CrossRefGoogle Scholar
Kim, C.-G., Ostriker, E. C., & Raileanu, R. 2017, ApJ, 834, 25 10.3847/1538-4357/834/1/25CrossRefGoogle Scholar
Kimm, T. & Cen, R. 2014, ApJ, 788, 121 10.1088/0004-637X/788/2/121CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J. 2019, ARAA, 57, 227 10.1146/annurev-astro-091918-104430CrossRefGoogle Scholar
Oku, Y., Tomida, K., Nagamine, K., Shimizu, I., & Cen, R. 2022, ApJS, 262, 9 10.3847/1538-4365/ac77ffCrossRefGoogle Scholar
Shimizu, I., Todoroki, K., Yajima, H., & Nagamine, K. 2019, MNRAS, 484, 2632 10.1093/mnras/stz098CrossRefGoogle Scholar
Shin, E.-J., Kim, J.-H., & Oh, B. K. 2021, ApJ, 917, 12 10.3847/1538-4357/abffd0CrossRefGoogle Scholar
Stinson, G., Seth, A., Katz, N., Wadsley, J., Governato, F., & Quinn, T. 2006, MNRAS, 373, 1074 10.1111/j.1365-2966.2006.11097.xCrossRefGoogle Scholar
Stone, J. M., Tomida, K., White, C. J., & Felker, K. G. 2020, ApJS, 249, 4 10.3847/1538-4365/ab929bCrossRefGoogle Scholar
Sutherland, R. S. & Dopita, M. A. 1993, ApJS, 88, 253 10.1086/191823CrossRefGoogle Scholar