The binary alloy series of Ti-X metallic, composition modulated layered structures has been fabricated via magnetron sputtering. The Ti-X systems (where X is Ta, Mo, or V) explored are exemplary of solid solution systems, such as the supermodulus systems of Cu-Ni, Ag-Pd, Au-Ni, and Cu-Pd (which all feature fee crystalline compatibility). In the present case, the beta-phase of Ti sought in these Ti-X systems suggests bec crystalline compatibility, with interlayer misfit strains not exceeding 10%.
The Ti-X series examined, matches elements of high and low atomic number. (Z of Ti, V, Mo, and Ta are 22, 23, 42, and 73, respectively.) Difficulties which arise in a conventional tungsten basket - alumina crucible physical vapor deposition process, i.e. obtaining thr vaporization temperatures for Ti, V, Mo and Ta of 1235, 1332, 1822, and 2240 °C at 130 mPa, respectively, are overcome by magnetron sputtering. Thin films produced by alternate deposition of Ti with V, Mo, or Ta, are desired with individually unique, regular repeating layer thicknesses which range from 1.5 to 15 nm.
An initial characterization of the Ti-X composition modulated alloys has been conducted using X-ray diffraction. The pole figure constructions of the various composition wavelengths give a qualitative look at the strain accomodation within the thin films and possible manifestations in mechanical properties.