Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:34:52.380Z Has data issue: false hasContentIssue false

Photoemission Study of the Physical Nature of the InP Near-Surface Defect States

Published online by Cambridge University Press:  26 February 2011

K. K. Chin
Affiliation:
University of Notre Dame, Dept. of Physics, Notre Dame, IN 46556
R. Cao
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
T. Kendelewicz
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
K. Miyano
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
J. J. Yeh
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
S. Doniach
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
I. Lindau
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
W. E. Spicer
Affiliation:
Stanford University, Stanford Electronics Laboratories, Stanford, CA 94305
Get access

Abstract

The physical nature of the InP near-surface defect acceptor and donor states are studied by using photoemission spectroscopy. It is found that the In/n-InP(110) interface band bending does not start until the In coverage reaches about 0.3 monolayer (ML), while the In/p-InP(110) band bending is almost saturated at 0.3 ML. The annealing effect on the band bending of clean cleaved n-and p-type InP(llO) surfaces is also studied. It is found that annealing of the clean surface creates an irreversible band bending effect on the p-InP(110), but the n-InP(110) almost does not show any band bending after low temperature annealing. Based on these two striking differences in the band bending behavior of n- and p-type InP, it is proposed that the physical nature of InP near-surface defect acceptor and donor levels may be different and that phosphorus vacancies are the cause of p-InP surface Fermi level pinning.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spicer, W. E., Chye, P. W., Skeath, P. R., Su, C. Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979).Google Scholar
2. Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y., and Chye, P., Phys. Rev. Lett. 44, 420 (1980).Google Scholar
3. Spicer, W. E., Kendelewicz, T., Newman, N., Chin, K. K., and Lindau, I., Surf. Sci. 168. 240 (1986), and references therein.Google Scholar
4. Newman, N., Spicer, W. E., Kendelewicz, T., and Lindau, I., J. Vac. Sci. Technol., in press.Google Scholar
5. Haight, R., Bokor, J., Stark, J., Storz, R. H., Freeman, R. R., and Bucksbaum, P. H., Phys. Rev. Lett. 54, 1302 (1985).Google Scholar
6. Viturro, R. E., Slade, M. L., and Brillson, L. J., Phys. Rev. Lett., in press.Google Scholar
7. Srivastava, G. P., Proc. Conf. on Semi-Insulating Materials, Nottingham, (Shiva Publishing Ltd., 1980), 296.Google Scholar
8. Williams, R. H., J. Vac. Sci. Technol. B20, 929 (1981), and references therein.CrossRefGoogle Scholar
9. Daw, M. S. and Smith, D. L., Phys. Rev. B20, 5150 (1979).Google Scholar
10. Daw, M. S. and Smith, D. L., Solid State Commun. 37., 205 (1981), and references therein.Google Scholar
11. Allen, R. E. and Dow, J. D., Phys. Rev. B25., 1423 (1982).Google Scholar
12. Dow, J. D. and Allen, R. E., J. Vac. Sci. Technol. 20, 659 (1982).CrossRefGoogle Scholar
13. Allen, R. E., Humphreys, T. J., Dow, J. D., and Sankey, O. F., J. Vac. Sci. Technol. B2 (3), 449 (1984), and references therein.Google Scholar
14. Williams, R. H., J. Vac. Sci. Technol. 18, 929 (1981), and references therein.CrossRefGoogle Scholar
15. Kendelewicz, T., Petro, W. G., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. B2, 453 (1984).Google Scholar
16. Kendelewicz, T., Newman, N., List, R. S., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. B3, 1206 (1985).Google Scholar
17. Chin, K. K., Cao, R., Miyano, K., McCants, C. E., Lindau, I., and Spicer, W. E., Mat. Res. Symp. Proc. 54, 341 (1986).CrossRefGoogle Scholar
18. Chin, K. K., McKernan, P., and Lindau, I., J. Vac. Sci. and Technol. A 4 (4), 1949 (1986).Google Scholar
19. Chin, K. K., Kendelewicz, T., McCants, C., Cao, R., Miyano, K., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. A 4, 969 (1986).Google Scholar
20. Daniels, R. R., Zhao, T.-X., and Margaritondo, G., J. Vac. Sci. Technol. A 2 (2), 831 (1984).Google Scholar
21. Monch, W. and Koenders, L., Proceedings of the 17th International Conference of Physics of Semiconductors, 85 (1984).Google Scholar