Published online by Cambridge University Press: 26 February 2011
In a number of vapor deposited aluminium alloys grain growth has been investigated systematically by means of quantitative electron microscopy and found to proceed not by grain boundary migration, but by grain coalescence. Parameters influencing the observed mode of grain growth will be discussed with respect to the formation of microstructures with optimal resistance to electromigration, i.e. microstructures with large grain size, high homogeneity in the grain size distribution as well as a strong texture.
Analyses of grain size distribution after annealing indicate a strong retardation in grain growth by the solute in all aluminium alloys except Al(Cu). Relative large grain sizes and very small lognormal standard deviations have been observed in Al-l%Cu as well as ternary Al(Cu,Hf) thin films.