Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:43:49.250Z Has data issue: false hasContentIssue false

Characterization of Al and Al-Cr-Al Thin Films

Published online by Cambridge University Press:  26 February 2011

O. F. De Lima
Affiliation:
Argonne National Laboratory, MSD-223, 9700 S. Cass Ave., Argonne, IL 60439
Y. Lepetre
Affiliation:
Argonne National Laboratory, MSD-223, 9700 S. Cass Ave., Argonne, IL 60439
M. B. Brodsky
Affiliation:
Argonne National Laboratory, MSD-223, 9700 S. Cass Ave., Argonne, IL 60439
Get access

Abstract

TEM, X-ray diffraction, and electrical resistivity measurements were used to study the microstructure and the growth of AI-Cr-AI film sandwiches, where the individual Al layers were 300 Å thick and the Cr thickness was varied between 0–10 atomic layers. The base vacuum was around 1.0 × 10−10 torr, substrate temperatures varied between 100–350 °C, and evaporation rates were 3Å/s for Al and ∼0.1 – 0.2 Å/s for Cr. All Al films had a strong (111) texture and showed a non-percolative island structure at 350 °C. The films became connected at lower substrate temperatures, reaching perfect continuity at 100°C. However, electrical conductivity is achieved also for the films deposited at 350 °C when one or more atomic layers of Cr are sandwiched between the Al layers. Results for the superconducting critical temperature and resistivity are discussed in terms of Cr diffusion into Al and the film size effect.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ino, S., Watanabe, D. and Ogawa, S., J. Phys. Soc. Japan 19, 881 (1964).CrossRefGoogle Scholar
2. Dumpich, G. and Wassermann, E. F., Surface Sci. 22, 203 (1972).Google Scholar
3. Strongin, M., Kammerer, O.F. and Farrell, H. H., Phys. Rev. Lett. 30 (4), 129 (1973).Google Scholar
4. Chamberlain, M. B., J. Vac. Sci. Technol. 16 (2), 339 (1979).CrossRefGoogle Scholar
5. Babic, E., Ford, P. J., Rizzuto, E. and Salamoni, E., J. Low Temp. Phys. 8(3/4), 219 (1972).CrossRefGoogle Scholar
6. de Lima, O. F., Brodsky, M. B. and Sowers, C. H., Bull. Am. Phys. Soc. 21 (3), 225 (1986).Google Scholar
7. Lepetre, Y., Schuller, I. K., Rasigni, G., Rivoira, R., Philip, R. and Dhez, P., Int. Soc. for Optical Eng. Conf. Proc. 563, 258 (1985).Google Scholar
8. de Gennes, P. G. and Guyon, E., Phys. Letters, 3, 168 (1963).Google Scholar
9. Werthamer, N. R., Phys. Rev. 122, 2440 (1963).Google Scholar
10. Fu, C. L., Freeman, A. J. and Oguchi, T., Phys. Rev. Lett. 54 (25), 2700 (1985).CrossRefGoogle Scholar
11. Maple, M. B., in “Advances in Superconductivity”, edited by Deaver, B. and Ruvalds, J., NATO Series B, v.100, p. 279, 1983 (Plenum Press, N.York) ; Review paper.Google Scholar
12. Elliot, R. P., “Constitution of Binary Alloys, 1s1 Supplement”, p. 33, 1965 (McGraw-Hill, N.York).Google Scholar
13. Shunk, F. A., “Constitution of Binary Alloys, 2nd Supplement”, p. 21, 1969 (McGraw-Hill, N. York).Google Scholar
14. Chubov, P. N., Eremenko, V. V. and Yu. A., Pilipenko, Sov. Phys. JETP 22 (3), 389 (1969).Google Scholar
15. Meaden, G. T., “Electrical Resistance of Metals”, p. 115, 1965 (Plenum Press, N. York).Google Scholar
16. Babie, E., Krsnik, R. and Rizzuto, C., Solid State Commun. 13, 1027 (1973).Google Scholar
17. Aleksandrov, B. N., Soviet Phys. JETP 12 (2), 286 (1963).Google Scholar
18.CRC Handbook of Chemistry and Physics”, 65th ed., edited by Weas, R. C., tp. F-120, 1984 (CRC Press Inc., Florida).Google Scholar
19. Chopra, K. L, “Thin Film Phenomena”, p. 345, 1969 (McGraw-Hill Co., N. York).Google Scholar
20. Grigorovic, R., Dévényi, A., and Botila, T., J. Phys. Chem. Solids 22, 428 (1962).Google Scholar