Let
$n\geqslant C$ for a large universal constant
$C>0$ and let
$B$ be a convex body in
$\mathbb{R}^{n}$ such that for any
$(x_{1},x_{2},\ldots ,x_{n})\in B$, any choice of signs
$\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2},\ldots ,\unicode[STIX]{x1D700}_{n}\in \{-1,1\}$ and for any permutation
$\unicode[STIX]{x1D70E}$ on
$n$ elements, we have
$(\unicode[STIX]{x1D700}_{1}x_{\unicode[STIX]{x1D70E}(1)},\unicode[STIX]{x1D700}_{2}x_{\unicode[STIX]{x1D70E}(2)},\ldots ,\unicode[STIX]{x1D700}_{n}x_{\unicode[STIX]{x1D70E}(n)})\in B$. We show that if
$B$ is not a cube, then
$B$ can be illuminated by strictly less than
$2^{n}$ sources of light. This confirms the Hadwiger–Gohberg–Markus illumination conjecture for unit balls of
$1$-symmetric norms in
$\mathbb{R}^{n}$ for all sufficiently large
$n$.