We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the turbulence below a quasi-flat free surface, focusing on the energy transport in space and across scales. We leverage a large zero-mean-flow tank where homogeneous turbulence is generated by randomly actuated jets. A wide range of Reynolds number is spanned, reaching sufficient scale separation for the emergence of an inertial sub-range. Unlike previous studies, the forcing extends through the source layer, although the surface deformation remains millimetric. Particle image velocimetry along a surface-normal plane resolves from the dissipative to the integral scales. The contributions to turbulent kinetic energy from both vertical and horizontal components of velocity approach the prediction based on rapid distortion theory as the Reynolds number is increased, indicating that discrepancies among previous studies are likely due to differences in the forcing. At odds with the theory, however, the integral scale of the horizontal fluctuations grows as the surface is approached. This is rooted in the profound influence exerted by the surface on the inter-scale energy transfer: along horizontal separations, the direct cascade of energy in horizontal fluctuations is hindered, while an inverse cascade of that in vertical fluctuations is established. This is connected to the structure of upwellings and downwellings. The former, characterized by somewhat larger spatial extent and stronger intensity, are associated with extensional surface-parallel motions. They thus transfer energy to the larger horizontal scales, prevailing over downwellings which favour the compression (and concurrent vertical stretching) of the eddies. Both types of structures extend to depths between the integral scale and the Taylor microscale.
Stall cells are transverse cellular patterns that often appear on the suction side of airfoils near stalling conditions. Wind-tunnel experiments on a NACA4412 airfoil at Reynolds number ${Re}=3.5 \times 10^5$ show that they appear for angles of attack larger than $\alpha = 11.5^{\circ }\ (\pm 0.5^{\circ })$. Their onset is further investigated based on global stability analyses of turbulent mean flows computed with the Reynolds-averaged Navier–Stokes (RANS) equations. Using the classical Spalart–Allmaras turbulence model and following Plante et al. (J. Fluid Mech., vol. 908, 2021, A16), we first show that a three-dimensional stationary mode becomes unstable for a critical angle of attack $\alpha = 15.5^{\circ }$ which is much larger than in the experiments. A data-consistent RANS model is then proposed to reinvestigate the onset of these stall cells. Through an adjoint-based data-assimilation approach, several corrections in the turbulence model equation are identified to minimize the differences between assimilated and reference mean-velocity fields, the latter reference field being extracted from direct numerical simulations. Linear stability analysis around the assimilated mean flow obtained with the best correction is performed first using a perturbed eddy-viscosity approach which requires the linearization of both RANS and turbulence model equations. The three-dimensional stationary mode becomes unstable for angle $\alpha = 11^{\circ }$ which is in significantly better agreement with the experimental results. The interest of this perturbed eddy-viscosity approach is demonstrated by comparing with results of two frozen eddy-viscosity approaches that neglect the perturbation of the eddy viscosity. Both approaches predict the primary destabilization of a higher-wavenumber mode which is not experimentally observed. Uncertainties in the stability results are quantified through a sensitivity analysis of the stall cell mode's eigenvalue with respect to residual mean-flow velocity errors. The impact of the correction field on the results of stability analysis is finally assessed.
Fiber Bragg grating-based Raman oscillators are capable of achieving targeted frequency conversion and brightness enhancement through the provision of gain via stimulated Raman scattering across a broad gain spectrum. This capability renders them an exemplary solution for the acquisition of high-brightness, specialized-wavelength lasers. Nonetheless, the output power of all-fiber Raman oscillators is typically limited to several hundred watts, primarily due to limitations in injectable pump power and the influence of higher-order Raman effects, which is inadequate for certain application demands. In this study, we introduce an innovative approach by employing a graded-index fiber with a core diameter of up to 150 μm as the Raman gain medium. This strategy not only enhances the injectable pump power but also mitigates higher-order Raman effects. Consequently, we have successfully attained an output power of 1780 W for the all-fiber Raman laser at 1130 nm, representing the highest output power in Raman fiber oscillators with any configuration reported to date.
We report a novel pilot project to characterise intra-night optical variability (INOV) of an extremely rare type of quasar, which has recently been caught in the act of transiting from a radio-quiet to radio-loud state, on a decadal time scale. Such rare transitions may signify a recurrence, or conceivably the first switch-on of jet activity in optically luminous quasars. The newly formed jet could well be jittery and unsteady, both in power and direction. The optically brightest among such radio-state transition candidates, the quasar J0950+5128 ($z = 0.2142$), was monitored by us with dense sampling in the R-band, during 2020-21 in 6 sessions, each lasting $ \gt $ 4 hours. This is the first attempt to characterise the INOV properties associated with this recently discovered, extremely rarely observed phenomenon of quasar radio-state transition. The non-detection of INOV in any of the 6 sessions, down to the 1-2% level, amounts to a lack of evidence for a blazar-like optical activity, $\sim$ 2 years after its transition to radio-loud state was found. The only INOV feature detected in J0950+5128 during our observational campaign was a $\sim$ 0.15-mag spike lasting < 6 minutes, seen at 13.97 UT on 18-March-2021. We also report the available optical light curves of this quasar from the Zwicky Transient Facility survey, which indicate that it had experienced a phase of INOV activity around the time its transition to the radio-loud state was detected, however that phase did not sustain until the launch of our INOV campaign $\sim$ 2 years later.
This experimental study employs Bayesian optimisation to maximise the cross-flow (transverse) flow-induced vibration (FIV) of an elastically mounted thin elliptical cylinder by implementing axial (or angular) flapping motions. The flapping amplitude was in proportion to the vibration amplitude, with a relative phase angle imposed between the angular and transverse displacements of the cylinder. The control parameter space spanned over the ranges of proportional gain and phase difference of $0 \leq K_p^* \leq 5$ and $0 \leq \phi _d \leq 360^\circ$, respectively, over a reduced velocity range of $3.0 \leqslant {U^*} = U/({{f_{nw}}} b) \leqslant 8.5$. The corresponding Reynolds number range was $1250 \leqslant {{Re}} =(U b)/\nu \leqslant 3580$. Here, $U$ is the free stream velocity, $b$ is the major cross-sectional diameter of the cylinder, ${{f_{nw}}}$ is the natural frequency of the system in quiescent fluid (water) and $\nu$ is the kinematic viscosity of the fluid. It was found that the controlled body rotation extended the wake-body synchronisation across the entire ${U^*}$ range tested, with a larger amplitude response than the non-rotating case for all flow speeds. Interestingly, two new wake-body synchronisation regimes were identified, which have not been reported in previous studies. As this geometry acts as a ‘hard-oscillator’ for ${U^*} \geqslant 6.3$, an adaptive gain (i.e. one that varies as a function of oscillation amplitude) was also implemented, allowing the body vibration, achieved for a non-rotating cylinder using increasing ${U^*}$ increments, to be excited from rest. The findings of the present study hold potential implications for the use of FIV as a means to efficiently extract energy from free-flowing water sources, a topic of increasing interest over the last decade.
Continuum kinetic simulations are increasingly capable of resolving high-dimensional phase space with advances in computing. These capabilities can be more fully explored by using linear kinetic theory to initialize the self-consistent field and phase space perturbations of kinetic instabilities. The phase space perturbation of a kinetic eigenfunction in unmagnetized plasma has a simple analytic form, and in magnetized plasma may be well approximated by truncation of a cyclotron-harmonic expansion. We catalogue the most common use cases with a historical discussion of kinetic eigenfunctions and by conducting nonlinear Vlasov–Poisson and Vlasov–Maxwell simulations of singlemode and multimode two-stream, loss-cone and Weibel instabilities in unmagnetized and magnetized plasmas with one- and two-dimensional geometries. Applications to quasilinear kinetic theory are discussed and applied to the bump-on-tail instability. In order to compute eigenvalues we present novel representations of the dielectric function for ring distributions in magnetized plasmas with power series, hypergeometric and trigonometric integral forms. Eigenfunction phase space fluctuations are visualized for prototypical cases such as the Bernstein modes to build intuition. In addition, phase portraits are presented for the magnetic well associated with nonlinear saturation of the Weibel instability, distinguishing current-density-generating trapping structures from charge-density-generating ones.
We experimentally investigate the effect of Reynolds number ($Re$) on the turbulence induced by the motion of bubbles in a quiescent Newtonian fluid at small $Re$. The energy spectra, $E(k)$, are determined from the decaying turbulence behind the bubble swarm obtained using particle image velocimetry. We show that when $Re \sim O(100)$, the slope of the normalized energy spectra is no longer independent of the gas volume fraction and the $k^{-3}$ subrange is significantly narrower, where $k$ is the wavenumber. This is further corroborated using second-order longitudinal velocity structure function and spatial correlation of the velocity behind the bubble swarm. On further decreasing the bubble Reynolds number ($O(1) < Re < O(10)$), the signature $k^{-3}$ of the energy spectra for the bubble-induced turbulence is replaced by $k^{-5/3}$ scaling. Thus, we provide experimental evidence to the claim by Mazzitelli et al. (Phys. Fluids, vol. 15, 2003, pp. L5–L8) that at low Reynolds numbers the normalized energy spectra of the bubble-induced turbulence will no longer show the $k^{-3}$ scaling because of the absence of bubble wake and that the energy spectra will depend on the number of bubbles, thus being non-universal.
This study conducts experimental investigations into wake-induced vibration (WIV) of a circular cylinder placed downstream of an oscillating cylinder. Surprisingly, it is observed that the previously identified WIV phenomenon, characterized by a sustained increase in amplitude at higher reduced velocities, does not occur when the upstream cylinder oscillates at large amplitudes. Instead, a different phenomenon, which we refer to as the ‘wake-captured vibration’, becomes dominant. The experiments reveal a negative correlation between the vortex-induced vibration amplitude response of the upstream cylinder and the WIV amplitude response of the downstream cylinder. Through a quasi-steady and linear instability analysis, the study demonstrates that the previously proposed wake-displacement mechanism may not be applicable for predicting the cylinder WIV response in the wake of an oscillating body. This is because the lift force gradients across the wake, measured through stationary cylinder experiments, decrease significantly when the upstream cylinder vibrates at higher amplitudes. Consequently, actively controlled vibration experiments are conducted to systematically map the hydrodynamic properties of the downstream cylinder vibrating in the wake of an oscillating cylinder. The findings align with observations from free-vibration experiments, and help to explain the amplitude and frequency response of WIV. Additionally, wake visualization through particle image velocimetry is conducted to provide further insights into the complex wake and vortex–body interactions.
We study the two-dimensional creeping flow of a viscoelastic fluid around a cylinder confined between two plates parallel to its axis. First, we solve the governing equations under steady state with our novel stabilized finite-element formulation to obtain converged solutions even at very high Weissenberg numbers. Then, we examine the stability of this solution by perturbing all flow variables and solving the corresponding eigenvalue problem. At critical conditions, a stable asymmetric flow arises, in which more fluid passes from either the upper or the lower gap between the cylinder and the channel wall. Both shear-thinning and elasticity play a crucial role on the onset and subsequent evolution of the instability. Energy analysis shows that the terms of the constitutive equation corresponding to apparent strain-rate thinning and material extensibility are responsible for the flow destabilization. The instability is present at a wider range of flow conditions when the material is more elastic and when the solvent contribution is smaller. The instability is also promoted by increasing the confinement. Beyond the critical conditions, asymmetric flow profiles vanish when the flow is so intense that thinning effects are not important anymore. The critical Weissenberg number for instability inception and cessation depends on material properties and geometry exponentially and linearly, respectively. Furthermore, the instability arises even in a seemingly non-shear-thinning fluid, i.e. one with constant shear viscosity in simple shear, when the solvent contribution is minimal, because of the apparent thinning effect that is created by the convection of the viscoelastic stresses. Finally, models with extension-rate thinning trigger the instability at limited flow conditions, when the shear viscosity decreases with the shear rate, and the normal stresses at the wake of the cylinder are still important. These results agree with previous experiments and simulations, and give new insights on the physical mechanism that triggers this flow instability.
In the astrophysics community it is common practice to model collisionless dust, entrained in a gas flow, as a pressureless fluid. However, a pressureless fluid is fundamentally different from a collisionless fluid – the latter of which generically possess a non-zero anisotropic pressure or stress tensor. In this paper we derive a fluid model for collisionless dust, entrained in a turbulent gas, starting from the equations describing the motion of individual dust grains. We adopt a covariant formulation of our model to allow for the geometry and coordinate systems prevalent in astrophysics, and provide a closure valid for the accretion disc context. We show that the continuum mechanics properties of a dust fluid corresponds to a higher-dimensional anisotropic Maxwell fluid, after the extra dimensions are averaged out, with a dynamically important rheological stress tensor. This higher-dimensional treatment has the advantage of keeping the dust velocity and velocity of the fluid seen, and their respective moments, on the same footing. This results in a simplification of the constitutive relation describing the evolution of the dust rheological stress.
The Earth magnetopause, when sufficiently plane and stationary at a local scale, can be considered as a ‘quasi-tangential’ discontinuity, since the normal component of the magnetic field $B_n$ is typically very small but not zero. Contrary to observations, the ‘classic theory of discontinuities’ predicts that rotational and compressional jumps should be mutually exclusive in the general case $B_n \ne 0$, but allows only one exception: the tangential discontinuity provided that $B_n$ is strictly zero. Here we show that finite Larmor radius (FLR) effects play an important role in the quasi-tangential case, whenever the ion Larmor radius is not fully negligible with respect to the magnetopause thickness. By including FLR effects, the results suggest that a rotational discontinuity undergoes a change comparable to the change of a shear Alfvén into a kinetic Alfvén wave when considering linear modes. For this new kind of discontinuity, the co-existence of rotational and compressional variations at the magnetopause does no more imply that this boundary is a strict tangential discontinuity, even in one-dimensional (1-D)-like regions far from X lines if any. This result may lead to important consequences concerning the oldest and most basic questions of magnetospheric physics: how can the magnetopause be open, where and when? While the role of FLR is established theoretically, in this paper we show that it can be proved experimentally. For this, we make use of magnetospheric multiscale mission (MMS) data and process them with the most recent available four spacecraft tools. First, we present the different processing techniques that we use to estimate spatial derivatives, such as $grad(B)$ and $div(P)$, and the magnetopause normal direction. We point out why this normal direction must be determined with extremely high accuracy to make the conclusions unambiguous. Then, the results obtained by these techniques are presented in a detailed case study and on a statistical basis.
The reactive Navier–Stokes equations with adaptive mesh refinement and a detailed chemical reactive mechanism (11 species, 27 steps) were adopted to investigate a detonation engine considering the injection and supersonic mixing processes. Flame acceleration and deflagration-to-detonation transition (DDT) in a premixed/inhomogeneous supersonic hydrogen–air mixture with and without transverse jet obstacles were addressed. Results demonstrate the difficulty in undergoing DDT in the premixed/inhomogeneous supersonic mixture within a smooth chamber. By contrast, multiple transverse jets injected into the chamber aid detonation transition by introducing perturbed vortices, shock waves and a suitable blockage ratio. Increasing distance between the leading shock and the flame tip impedes detonation transition due to an insufficient blockage ratio. The extremely perturbed distributions of fuel-lean and fuel-rich mixtures lead to more complicated flame structures. Also, a larger flame thickness appears in the inhomogeneous mixture compared with the premixed mixture, resulting in a lower combustion temperature. The key findings are that the DDT, detonation quenching and reinitiation are generated in the inhomogeneous supersonic mixture, but both DDT mechanisms are ascribed to a strong Mach stem with the Zel'dovich gradient mechanism. Additionally, the obtained results demonstrate that an intensely fuel-lean mixture (equivalence ratio = 0.15) results in a partially decoupled flame front. However, detonation reinitiation and subsequent self-sustained detonation occur when a fierce shock wave propagates through a highly sensitive mixture, even within a smaller and elongated area. Moreover, the inhomogeneous mixture also augments the propagation speed and detonation cell structure instabilities and delays the sonic point resulting from the extending non-equilibrium reaction.
Direct numerical simulations are performed to explore the evolution behaviour of the turbulent/non-turbulent interface (TNTI) in a temporally evolving turbulent plane jet, using the evolution equation for the TNTI surface area. A novel algorithm is used to calculate the surface area of the TNTI and entrainment flux. It is shown that the surface area remains relatively constant, which leads to the mean entrainment velocity being inversely proportional to the square root of time. On average, the effects of the stretching and curvature/viscous terms on the TNTI area roughly counterbalance each other, while the curvature/inviscid term associated with vortex stretching is virtually zero. More specifically, the stretching term contributes to the production of the surface area, while the curvature/viscous term is associated with a destruction in the surface area. The local effect of the curvature/viscous term exhibits high spatial intermittency with small-scale extreme/intense events, whereas the effect of the large-scale stretching term is more continuous. To shed light on the contribution of curvature/viscous term to the evolution of the surface area, we decompose it into three components. The effect of the curvature/normal diffusion term (the curvature/viscous dissipation term) in the bulging regions (the valley regions) mainly contributes to the production of the area. The continuous decrease of the average mean curvature is associated with the production of the bulging regions and the destruction of the valley regions. Finally, although the entrainment velocity is mainly dominated by the normal diffusion effect, all three components related to the viscous effect are indispensable to the production and destruction of the TNTI area. This numerical study contributes to a better understanding of the evolution of the TNTI area.
Prandtl's secondary flows of the second kind generated by laterally varying roughness are studied using the linearised Reynolds-averaged Navier–Stokes approach proposed by Zampino et al. (J. Fluid Mech., vol. 944, 2022, p. A4). The momentum equations are coupled to the Spalart–Allmaras model while the roughness is captured by adapting established strategies for homogeneous roughness to heterogeneous surfaces. Linearisation of the governing equations yields a framework that enables a rapid exploration of the parameter space associated with heterogeneous surfaces, in the limiting case of small spanwise variations of the roughness properties. Channel flow is considered, with longitudinal high- and low-roughness strips arranged symmetrically. By varying the strip width, it is found that linear mechanisms play a dominant role in determining the size and intensity of secondary flows. In this setting, secondary flows may be interpreted as the time-averaged output response of the turbulent mean flow subjected to a steady forcing produced by the wall heterogeneity. In fact, the linear model predicts that secondary flows are most intense when the strip width is about 0.7 times the half-channel height, in excellent agreement with available data. Furthermore, a unified framework to analyse combinations of heterogeneous roughness properties and laterally varying topographies, common in applications, is discussed. Noting that the framework assumes small spanwise variations of the surface properties, two separate secondary-flow-inducing source mechanisms are identified, i.e. the lateral variation of the virtual origin from which the turbulent structure develops and the lateral variation of the streamwise velocity slip, capturing the acceleration/deceleration perceived by the bulk flow over troughs and crests of non-planar topographies.
By harnessing optical memories based on electromagnetically induced transparency in warm vapors of gaseous alkali metals and cold atomic clouds, this article presents new methods for motion sensing. The proposed scheme for velocimetry can substantially increase the sensitivity of some recent works based on the light-dragging effect in a moving medium, and on the other hand, our proposal, when realized using cold atoms, opens new research questions with regard to limits of light storage in cold atomic clouds. Ultimately, a detailed experimental setup is presented for the realization of the velocimetry scheme using stopped light, which includes considerations for the choice of the medium, laser configuration and control. By investigating the limits of optical memories in motion sensing applications, this research opens up new avenues for employing optical memories beyond applications in quantum information science.
We compare three different approaches to describe a magnetic island in a generic toroidal plasma: (i) perturbative, from the perspective of the equilibrium magnetic field and the related action in a variational principle formulation; (ii) again perturbative, based on the integrability of a system with a single resonant mode and the application of a canonical transformation onto a new island equilibrium system; and (iii) non-perturbative, making use of a full geometric description of the island considered as a stand-alone plasma domain. For the three approaches, we characterize some observables and discuss the respective limits.
We present a practical verification method for safety analysis of the autonomous driving system (ADS). The main idea is to build a surrogate model that quantitatively depicts the behavior of an ADS in the specified traffic scenario. The safety properties proved in the resulting surrogate model apply to the original ADS with a probabilistic guarantee. Given the complexity of a traffic scenario in autonomous driving, our approach further partitions the parameter space of a traffic scenario for the ADS into safe sub-spaces with varying levels of guarantees and unsafe sub-spaces with confirmed counter-examples. Innovatively, the partitioning is based on a branching algorithm that features explainable AI methods. We demonstrate the utility of the proposed approach by evaluating safety properties on the state-of-the-art ADS Interfuser, with a variety of simulated traffic scenarios, and we show that our approach and existing ADS testing work complement each other. We certify five safe scenarios from the verification results and find out three sneaky behavior discrepancies in Interfuser which can hardly be detected by safety testing approaches.
We present a comprehensive analysis of simultaneous, long-term observations of blazar S5 0716+714, covering optical/UV, X-ray, and $\gamma$-ray wavelengths. All available observations of the source by Swift-UVOT/XRT and Fermi-LAT till January 2023 were used, and the spectra were fitted using power-law/log-parabola functions. A detailed correlation study between the best-fit parameters were performed, and our results suggest that the spectral changes observed during high flux states could be associated with the spectral energy distribution shifting towards the blue end. The flux distribution predominantly shows a log-normal/double log-normal behaviour, whereas the index distribution indicates a Gaussian or double Gaussian nature. As a Gaussian variation in the index of a power-law spectrum will result in a log-normal variation in the flux, the observed log-normal variability in blazars may be associated with Gaussian variation in the spectral indices. The observed normal/log-normal variations in indices/fluxes can again be interpreted through bluer when brighter behaviour of the source. Furthermore, the broadband SED during two distinct flux states can be successfully fitted by considering synchrotron, synchrotron self-Compton, and external Compton emission processes. The flux enhancement of the source is predominantly associated with an increase in the bulk Lorentz factor. Additionally, we find that the model curves corresponding to variations in the Lorentz factor have the potential to explain the observed correlations between the spectral parameters. Our study thereby concludes that the spectral variations of blazar S5 0716+714 are primarily associated with changes in the bulk Lorentz factor of the jet.
Bacteria are the most ubiquitous life-forms on Earth, and are studied extensively to gain insight into their function and understand how they interact with their environment. In recent years, bacterial biophysics has added a new dimension to this research by using the tools of physics to investigate the quantitative principles that underpin these cellular systems. This book provides a modern and cohesive introduction to bacterial biophysics, with a focus on biofilms, slimes and capsules. In the first of three sections, key techniques and models from the physical sciences that can be applied to bacterial problems are presented. Section 2 then provides a bacterial microbiology primer for physical scientists and an examination of single-cell phenomena. The final section explores interacting bacteria and biofilms from a physical perspective. Ideal for physics graduates interested in this important field, this book is also relevant for researchers in physical chemistry, bioengineering, mathematics and microbiology.