We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Developed in this study is a theoretical description of squeeze-film lubrication systems that involve the flexural oscillation of a thin plate near a parallel wall. Such systems were discovered in recent experiments to produce load-bearing attractive forces that are a thousandfold stronger than those generated by rigid oscillators, which typically favour repulsion. Analyses of squeeze-film gas flow driven by a presumed plate deformation reproduce the observed magnification of attractive load capacity, but exhibit serious discrepancies with crucial aspects of the experimental measurements – most importantly, the precise distribution of air pressure along the film. The discrepancies are resolved in this study by accounting for the presence of two-way-coupled fluid–structure interactions whereby the undulations of the plate, modelled here with use of the classical Kirchhoff–Love equation, are affected non-negligibly by the evolving pressure, described by a modified Reynolds lubrication equation that accounts for compressibility. The resulting problem of elastohydrodynamic lubrication is solved with use of perturbation methods that exploit the limit of small oscillation amplitudes. The analysis ultimately provides an explicit expression specifying the attractive load capacity of a squeeze-film system as a function of relevant operating parameters – including, in particular, the amplitude and frequency of the localized excitation force exerted on the plate. The rudimentary theory derived here may be readily generalized to guide the analysis and development of a wide variety of emerging engineering systems that exploit the vibration-induced squeeze-film effect – such as wall-climbing soft robots and contactless grippers.
Turbulent flow is a notoriously difficult topic in its own right because it is a truly multi-scale problem with strong nonlinearities. However, in this chapter, I will provide a framework for the key concepts, statistical measurements, and implications for the mixing process, so that the reader can better understand this issue. Both the classic engineering treatment of turbulence as well as the modern statistical closure theories will be introduced and brought together to show the reader how they can be synthesized to describe turbulence mixing induced by hydrodynamic instability driven flows. Some of the key concepts that I will elaborate on include energy transfer and interacting scales. The energy spectrum, and its applicability to RMI and RTI flow, is discussed.
Due to the time-consuming nature of fully 3D simulations of turbulence mixing induced by hydrodynamic instabilities, it is desirable to run computations in 2D when possible. But does 2D turbulence resemble 3D turbulence? The relevance of idealized 2D turbulence to certain aspects of atmospheric motion has been emphasized in many works. Yet molecular mixing occurs at the interfaces of the fluids, and the ratios of area-to-volume in three dimensions are very different than the length-to-area ratios in two dimensions. This has prompted some well-known scientists to claim that "two-dimensional turbulence, ... is a consequence of the construction of large computers." I will investigate this issue in detail and point out that the large-scale structures evolve over a similar time scale in 2D and 3D, indicating that 2D simulations are useful for providing some indication of the amount of instability growth at an interface.
We demonstrate the post-compression of the GW-level femtosecond pulse in a solid-state multi-pass cell (MPC) by the pre-chirp management method. When the laser pulse is positively pre-chirped, the 200 μJ 170 fs input pulse is compressed to 163 μJ 44 fs at the output, corresponding to a transmission of 81% and a pulse shortening factor of 3.86. When the laser pulse is negatively pre-chirped, the spectral evolution, as the pulse propagates in the MPC, is characterized and, eventually, the pulse duration is compressed to 51 fs, corresponding to a pulse shortening factor of 3.3. After the driving laser goes through the pre-chirp managed MPC device, the power stability and beam quality are almost preserved. The experimental results offer a viable path toward the post-compression of high-peak-power laser pulses.
Intense lasers are now being used to probe the physics of fluid dynamics in the high energy density physics (HEDP) regime, a term roughly referring to thermodynamic pressures greater than 1 Mbar. This approach allows us to design dedicated experiments to examine the issue of fluid instabilities in isolation. These laser platforms are also employed to recreate aspects of astrophysical phenomena in the laboratory, a specialized research area frequently referred to as laboratory astrophysics. Studying astrophysical phenomena in the laboratory with intense lasers offers many advantages: Repeatability, advanced diagnostics, controlled initial conditions, etc.
Inertial Confinement Fusion (ICF) recently became the first technology to achieve ignition of hydrogen nuclear fusion fuel in the laboratory. Unlike magnetically confined fusion plasmas such as tokamaks, ICF requires high fuel compression. This implies a high convergence and high velocity implosion, usually driven with laser beams. This allows hydrodynamic instabilities to develop, primarily RTI and RMI. During the initial shock and acceleration phase when the shell is brought up to the peak implosion velocity, RMI instabilities at the various interfaces are followed by ablation front RT growth as the low-density plasma accelerates the dense shell of solid ablator and fuel. The implosion deceleration at the center is also unstable. The resulting spikes and bubbles prevent efficient fuel compression, and can also inject contaminants. I will discuss the measurement and mitigation of this problem. Z-pinch machines, which instead use an electrical current to compress the plasma, will illustrate the role of MHD in the ICF application.
Material strength is important for planetary science and planetary formation dynamics. Inspecting RTI growth in solid-state samples in a high-energy-density setting can be key to determining the strength of a number of materials, such as iron, lead, or tantalum. One of the important applications is the enhanced mixing in the scramjet; I will address this issue as well as detonation in the combustion chamber. Moreover, I will discuss the reactive RMI in detail to address several issues related to turbulence-flame interactions, such as an incident shock wave passing the interface and shock initiation of flow instabilities. Ejecta occurs when small pieces of the material are forced out as a result of stellar explosions or other sharp impacts in the engineering process. RMI is key to understanding the physics processes for the production and distribution of ejecta. Extensive data from numeric simulations and experimental evidence will be offered to provide a comprehensive picture about this topic.