We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The innermost region of the Milky Way harbors the central molecular zone (CMZ). This region contains a large amount of molecular gas but a poor star formation rate considering the densities achieved by the gas in this region. We used the arepo code to perform a hydrodynamic and star formation simulation of the galaxy, where a Ferrers bar was adiabatically introduced. During the stage of bar imposition, the bar strength excites density waves close to the inner Lindblad resonance guiding material towards the inner galaxy, driving the formation of a ring that we qualitatively associate with the CMZ. During the simulation, we identified that the ring passes three main phases, namely: formation, instability, and quasi-stationary stages. During the whole evolution, and particularly in the quasi-stationary stage, we observe that the ring is associated with the x2 family of periodic orbits. Additionally, we found that most of the star formation occurs during the ring formation stage, while it drastically decreases in the instability stage. Finally, we found that when the gas has settled in a stable x2 orbit, the star formation takes place mostly after the dense gas passes the apocentre, triggering the conveyor-belt mechanism described in previous studies.
Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a $\sim$1 MA current pulse with a 200 ns rise through a $\approx$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with $Re\sim 10^5\unicode{x2013}10^9$ and $M\sim 1\unicode{x2013}10$, while our magnetic Reynolds number of $Re_M\sim 1\unicode{x2013}15$ indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code.
Empirical evidence is provided that within the inertial sublayer (i.e. logarithmic region) of adiabatic turbulent flows over smooth walls, the skewness of the vertical-velocity component $S_w$ displays universal behaviour, being a positive constant and constrained within the range $S_w \approx 0.1\unicode{x2013}0.16$, regardless of flow configuration and Reynolds number. A theoretical model is then proposed to explain this behaviour, including the observed range of variations of $S_w$. The proposed model clarifies why $S_w$ cannot be predicted from down-gradient closure approximations routinely employed in large-scale meteorological and climate models. The proposed model also offers an alternative and implementable approach for such large-scale models.
Drosophila melanogaster has given enormous contributions to Space Biology Research. This organism is an important tool to be manipulated in genetic engineering and molecular experiments in order to understand different biological processes homologous to other multicellular systems, including humans. Their milestone contribution in microgravity conditions and radiation, the two most important variables in space, have allowed new knowledge and perspectives on the positive and negative effects on cellular, molecular and genetic levels. In this review, we expose the historical contribution of Drosophila melanogaster in Astrobiology.
The shear-induced diffusivity of non-Brownian spheres in monodisperse suspensions undergoing viscous flow was calculated using simulations that account for particle roughness and friction as independent parameters. The diffusivity increases significantly as the friction coefficient is increased, and the effect is largest on rougher particles. Roughness reduces the transverse diffusivities relative to smoother particles for sufficiently concentrated suspensions of frictionless and low-friction particles. However, the diffusivity of roughened particles is larger than smoother ones at high values of the friction coefficient. The increase of the diffusivity with friction is associated with a significant broadening of the variance of the rotational velocities. The most prevalent observation, when correlating the microstructure to changes in diffusivity for frictionless particles, is that less diffusive systems, with larger roughness, form layers along the flow direction. These results confirm previous experimental and simulation results that roughness can decrease diffusivity at large concentrations using a more detailed model. Also, comparisons of the simulation results with previously published experimental measurements indicate that friction improves the alignment of the results with experiments.
Fast radio bursts (FRBs) are short-duration radio transients that occur at random times in host galaxies distributed all over the sky. Large field of view instruments can play a critical role in the blind search for rare FRBs. We present a concept for an all-sky FRB monitor using a compact all-sky phased array (CASPA), which can efficiently achieve an extremely large field of view of $\sim10^4$ square degrees. Such a system would allow us to conduct a continuous, blind FRB search covering the entire southern sky. Using the measured FRB luminosity function, we investigate the detection rate for this all-sky phased array and compare the result to a number of other proposed large field-of-view instruments. We predict a rate of a few FRB detections per week and determine the dispersion measure and redshift distributions of these detectable FRBs. This instrument is optimal for detecting FRBs in the nearby Universe and for extending the high-end of the FRB luminosity function through finding ultraluminous events. Additionally, this instrument can be used to shadow the new gravitational-wave observing runs, detect high-energy events triggered from Galactic magnetars and search for other bright, but currently unknown transient signals.
We study the melting process of a solid under microgravity, driven solely by lateral vibrations that are perpendicular to the applied temperature gradient due to the absence of gravity-induced convection. Using direct numerical simulations with the phase-field method, we examine two-dimensional vibration-induced melting in a square cavity over four orders of magnitude of vibrational Rayleigh numbers, $10^5\le Ra_{{vib}}\le 10^9$. Our results show that as melting progresses, the flow structure transitions from a periodic-circulation regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection. The mean height of the liquid–solid interface follows a power-law dependency with time, $\bar {\xi } \sim \tilde t^{1/(2-2\alpha )}$, where $\alpha = 0$ in the periodic-circulation regime and $\alpha = 1/2$ in the columnar regime. We further observe that within the columnar regime, the morphological evolution of the liquid–solid interface is influenced by the interaction of columnar thermal plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we offer a comprehensive analysis of the plume merging behaviour, which is governed by the aspect ratio ($\bar {\xi }$) of the liquid layer and the intensity of vibration, quantified by the effective vibrational Rayleigh number $Ra_{vib}^{eff}$. We identify the relationship between the number of columnar plumes $K_m$ and $Ra_{vib}^{eff}$, finding that $K_m \sim \bar {\xi }^{-1} (Ra_{vib}^{eff})^{\gamma }$ with the fitting scaling exponent $\gamma = 0.150 \pm 0.025$. We subsequently quantify the characteristics of the interface roughness amplitude evolution in microgravity vibroconvection. Our results indicate that the roughness amplitude exhibits a power-law dependence on the mean height of the liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this dependence under the assumption of a non-uniform heat flux distribution at the interface, where the theory is corroborated by our numerical simulations.
A new approach for constructing polar-like boundary-conforming coordinates inside a toroid with strongly shaped cross-sections is presented. A coordinate mapping is obtained through a variational approach, which involves identifying extremal points of a proposed action in the mapping space from $[0, 2{\rm \pi} ]^2 \times [0, 1]$ to a toroidal domain in $\mathbb {R}^3$. This approach employs an action built on the squared Jacobian and radial length. Extensive testing is conducted on general toroidal boundaries using a global Fourier–Zernike basis via action minimisation. The results demonstrate successful coordinate construction capable of accurately describing strongly shaped toroidal domains. The coordinate construction is successfully applied to the computation of three-dimensional magnetohydrodynamic equilibria in the GVEC code where the use of traditional coordinate construction by interpolation from the boundary failed.
The Shore Control Centre (SCC) is being developed and tested as an autonomous ship vessel with remote control. However, since the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW) regulation's competency standard has yet to be altered, it must be revised and modified. Therefore, this study aims to define the competency of remote operators on an autonomous ship from ashore and develop a conceptual model of remote operators' competency. This study used both primary data by interviewing executives from four groups of maritime experts, and secondary data from academic databases, IMO, classification society and maritime companies. Academic databases are employed to conclude the academicians' view on remote operators’ (ROs’) competency and the other data sources are used to conclude the industrial view on the RO's competency. The content analysis technique was used to determine the presence of keywords or concepts from secondary data and develop a conceptual model. The study's findings present four main dimensions to indicate the development of future training and development programs for RO officers: navigation, cargo handling and stowage, controlling the ship's operation and care for persons onboard, and information technology; and present 45 competencies of ROs for managing autonomous ships from ashore, which a conceptual model can explain.
This study demonstrates a kilowatt-level, spectrum-programmable, multi-wavelength fiber laser (MWFL) with wavelength, interval and intensity tunability. The central wavelength tuning range is 1060–1095 nm and the tunable number is controllable from 1 to 5. The wavelength interval can be tuned from 6 to 32 nm and the intensity of each channel can be adjusted independently. Maximum output power up to approximately 1100 W has been achieved by master oscillator power amplifier structures. We also investigate the wavelength evolution experimentally considering the difference of gain competition, which may give a primary reference for kW-level high-power MWFL spectral manipulation. To the best of our knowledge, this is the highest output power ever reported for a programmable MWFL. Benefiting from its high power and flexible spectral manipulability, the proposed MWFL has great potential in versatile applications such as nonlinear frequency conversion and spectroscopy.
Large-aperture gratings have significant applications in inertial confinement fusion, immersion lithography manufacturing and astronomical observation. Currently, it is challenging and expensive to manufacture sizable monolithic gratings. Therefore, tiled multiple small-aperture gratings are preferred. In this study, the impact of seam phase discontinuity on the modulation of the laser beam field was explored based on the measurement results of the Shenguang-II laser large-aperture multi-exposure-tiled grating. An innovative method for accurately calculating the phase jump of multi-exposure-tiled grating seams was proposed. An intensive electromagnetic field analysis was performed by applying rigorous coupled-wave analysis to a reasonably constructed micrometer-level periodic grating seam structure, and the phase jump appearing in millimeter-scale seams of large-aperture tiled gratings was obtained accurately.
A key objective for upcoming surveys, and when re-analysing archival data, is the identification of variable stellar sources. However, the selection of these sources is often complicated by the unavailability of light curve data. Utilising a self-organising map (SOM), we demonstrate the selection of diverse variable source types from a catalogue of variable and non-variable SDSS Stripe 82 sources whilst employing only the median $u-g$, $g-r$, $r-i$, and $i-z$ photometric colours for each source as input, without using source magnitudes. This includes the separation of main sequence variable stars that are otherwise degenerate with non-variable sources ($u-g$,$g-r$) and ($r-i$,$i-z$) colour-spaces. We separate variable sources on the main sequence from all other variable and non-variable sources with a purity of $80.0\%$ and completeness of $25.1\%$, figures which can be modified depending on the application. We also explore the varying ability of the same method to simultaneously select other types of variable sources from the heterogeneous sample, including variable quasars and RR-Lyrae stars. The demonstrated ability of this method to select variable main sequence stars in colour-space holds promise for application in future survey reduction pipelines and for the analysis of archival data, where light curves may not be available or may be prohibitively expensive to obtain.
Dispersion relations of electrostatic surface waves propagating in magnetized plasmas contained in an infinite duct and in an infinite cylindrical column surrounded by vacuum are derived by means of a Vlasov equation and fluid equations, respectively. The kinematic boundary condition imposed on the distribution function, the specular reflection conditions on the four sides of a duct, can be satisfied by placing infinite number of fictitious surface charge sheets spaced by the duct widths. The Vlasov equation that includes these surface charge sheets is solved by summing up the contribution due to the infinite charge sheets. The method of placing appropriate fictitious surface charge sheets enables one to treat the surface waves in bounded plasmas of Cartesian structure with mathematical efficiency, kinetically. The kinetic duct dispersion relation is compared with the dispersion relation for the magnetized cylindrical plasma column. When the square duct cross-sectional area as well as the cylinder radius become infinity, both dispersion relations become the dispersion relation of the upper-hybrid wave.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
We examine the gravity-driven flow of a thin film of viscous fluid spreading over a rigid plate that is lubricated by another viscous fluid. We model the flow over such a ‘soft’ substrate by applying the principles of lubrication theory, assuming that vertical shear provides the dominant resistance to the flow. We do so in axisymmetric and two-dimensional geometries in settings in which the flow is self-similar. Different flow regimes arise, depending on the values of four key dimensionless parameters. As the viscosity ratio varies, the behaviour of the intruding layer ranges from that of a thin coating film, which exerts negligible traction on the underlying layer, to a very viscous gravity current spreading over a low-viscosity, near-rigid layer. As the density difference between the two layers approaches zero, the nose of the intruding layer steepens, approaching a shock front in the equal-density limit. We characterise a frontal stress singularity, which forms near the nose of the intruding layer, by performing an asymptotic analysis in a small neighbourhood of the front. We find from our asymptotic analysis that unlike single-layer viscous gravity currents, which exhibit a cube-root frontal singularity, the nose of a viscous gravity current propagating over another viscous fluid instead exhibits a square-root singularity, to leading order. We also find that large differences in the densities between the two fluids give rise to flows similar to that of thin films of a single viscous fluid spreading over a rigid, yet mobile, substrate.