Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T23:45:09.339Z Has data issue: false hasContentIssue false

26 - Systems Biology and Synthetic Biology with Populations of Bacteria

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Gives a brief review of systems biology and synthetic biology with populations of bacteria.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 310 - 312
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Alon, U., An Introduction to Systems Biology. Chapman and Hall: 2019.CrossRefGoogle Scholar
Forger, D. B., Biological Clocks, Rhythms and Oscillations, the Theory of Biological Time Keeping. MIT Press: 2017.Google Scholar
Golding, I.; Cox, E.C., Physical nature of bacterial cytoplasm. Physical Review Letters 2006, 96 (9), 098102. Evidence for sub-diffusion in bacteria. Many other studies indicate this is a common phenomenon.CrossRefGoogle ScholarPubMed
Ingalls, B. P. Mathematical Modelling in Systems Biology. MIT Press: 2013.Google Scholar

References

Danino, T.; Mandragon-Palomino, O.; Tsimring, L.; Hasley, J., A synchronised quorum of genetic clocks. Nature 2010, 463 (7279), 326330.CrossRefGoogle ScholarPubMed
Basu, S.; Gerchman, Y.; Collins, C. H.; Arnold, F. H.; Weiss, R., A synthetic multicellular system for programmed pattern formation. Nature 2005, 434 (7037), 11301134.CrossRefGoogle ScholarPubMed
Gardner, T. S.; Cantor, C. R.; Collins, J., Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403 (6767), 339342.CrossRefGoogle ScholarPubMed
Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403 (6767), 335338.CrossRefGoogle ScholarPubMed
Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd ed. CRC Press: 2020.Google Scholar
Moradali, M. F.; Rehan, B. H. A., Bacterial biopolymers: From pathogenesis to advanced materials. Nature Reviews Microbiology 2020, 18 (4), 195210.CrossRefGoogle ScholarPubMed
Hofling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics 2013, 76 (4), 046602.CrossRefGoogle ScholarPubMed
Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport Systems: Mesoscopic Foundations, Fronts and Spatial Instabilities. Springer: 2012.Google Scholar
Golding, I.; Cox, E. C., Physical nature of bacterial cytoplasm. Physical Review Letters 2006, 96 (9), 098102.CrossRefGoogle ScholarPubMed
Ramos-Leon, F.; Ramamurthi, K. S., Cytoskeletal proteins: Lessons learned from bacteria. Physical Biology 2022, 19 (2), 021005.CrossRefGoogle ScholarPubMed
Patel, K.; Rodriguez, C.; Stabb, E. V.; Hagen, S. J., Spatially propagating activation of quorum sensing in Vibrio fischeri and the transition to low population density. Physical Review E 2020, 101 (6-1), 062421.CrossRefGoogle ScholarPubMed
James, S.; Nilsson, P.; James, G.; Kjelleberg, S.; Fagerstrom, T., Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation. Journal of Molecular Biology 2000, 296 (4), 11271137.CrossRefGoogle ScholarPubMed
Ingalls, B. P., Mathematical Modeling in Systems Biology: An Introduction. MIT Press: 2013.Google Scholar
Chen, A. Y.; Deng, Z.; Billings, A. N.; Seker, U. O. S.; Lu, M. Y.; Citorik, R. J.; Zakeri, B.; Lu, T. K., Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials 2014, 13 (5), 515523.CrossRefGoogle ScholarPubMed
Morris, E. R.; Nishinari, K.; Rinaudo, M., Gelation of gellan – a review. Food Hydrocolloids 2012, 28 (2), 373411.CrossRefGoogle Scholar
Eelderink-Chen, Z.; Bosman, J.; Sartor, F.; Dodd, A. N.; Kovacs, A. T.; Merrow, M., A circadian clock in a nonphotosynthetic prokaryote. Science Advances 2021, 7 (2), eabe2086.CrossRefGoogle Scholar
Cai, L.; Friedman, N.; Xie, S., Stochastic protein expression in individual cells at the single molecule level. Nature 2006, 440 (7082), 358362.CrossRefGoogle ScholarPubMed
Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions with delays. The Journal of Physical Chemistry 1977, 25 (12), 23402361.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×