We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Extragalactic maser sources are unique tools to derive fundamental physical quantities of the host galaxies, e.g, geometry of accretion disks around super-massive black holes and precise black hole masses, and study in detail the interaction region of nuclear jets/outflows with the interstellar medium, in nearby and distant Active Galactic Nuclei. So far, however, extragalactic maser searches have yielded detection of few percent, and only relatively few maser sources have been found. Because of their unprecedented sensitivity, new upcoming facilities, like the SKA and the ngVLA, will allow to significantly increase the number of known (water) maser sources. This will lead to the chance of performing statistically-relevant studies of the maser phenomenon (and its occurrence), derive extragalactic masers luminosity functions, and ultimately (in particular, through the aid of longer-baselines arrays options) to perform the studies described above for larger samples and up to cosmological distances.
The Central Molecular Zone (CMZ) in the Galactic Center region shows outstanding non-circular motion unlike the Galactic disk. While several models describing this non-circular motion have been proposed, a uniform kinematic model of the CMZ orbit has not yet emerged. To uncover the dynamics of the Galactic center region, we conducted VLBI astrometric observations of 22GHz water maser sources towards the Galactic center using VERA. By measuring parallaxes and proper motions, we can determine whether each source is actually located in the CMZ or not, and identify the three-dimensional positions and velocities in the non-circular orbit if the source is indeed located in the CMZ. We present the results of our astrometric study for several maser sources associated with molecular clouds towards the Galactic center. The astrometric observations toward Sgr B2(M) indicated that Sgr B2 complex is moving toward the positive Galactic longitude relative to Sgr A*.
This paper reviews our current knowledge about pulsating chemically peculiar (CP) stars. CP stars are slowly rotating upper main-sequence objects, efficiently employing diffusion in their atmospheres. They can be divided into magnetic and non-magnetic objects. Magnetic activity significantly influence their pulsational characteristics. Only a handful of magnetic, classical pulsating objects are now known. The only exceptions are about 70 rapidly oscillating Ap stars, which seem to be located within a very tight astrophysical parameter space. Still, many observational and theoretical efforts are needed to understand all important physical aspects and their interrelationships. The most important steps to reach these goals are reviewed.
Thanks to forthcoming large-scale surveys, a tremendous number of strong lenses will be discovered in the coming years. The gain in accuracy on H0 from such a large population of lensed quasars is a key question for the future of time-delay cosmography. In such context, lensed systems will have to be modeled in an automated way, with models that are sufficiently generic to apply to every lens. I explore the biases that may arise from unaccounted-for azimuthal structures in mass models. The non-modeled twists in lensing galaxies are expected to bias the shear inference but not H0. Disregarded ellipticity gradients, boxyness and discyness may impact the cosmological inference on a lens-by-lens basis. Nevertheless, the diversity of azimuthal mass profile in lenses balances the bias at a population level and the H0 inference can thus benefits from such large surveys.
The instability strip (IS) of classical Cepheids has been extensively studied theoretically. Comparison of the theoretical IS edges with those obtained empirically, using the most recent Cepheids catalogs available, can provide us with insights into the physical processes that determine the position of the IS boundaries. We investigate the empirical positions of the IS of the classical Cepheids in the Large Magellanic Cloud (LMC) using data of classical fundamental-mode and first-overtone LMC Cepheids from the OGLE-IV variable star catalog, together with a recent high-resolution reddening map from the literature. We studied their position on the Hertzsprung-Russell diagram and determined the IS borders by tracing the edges of the color distribution along the strip. We obtain the blue and red edges of the IS in V- and I-photometric bands, in addition to Teff and log L⊙. The results obtained show a break located at the Cepheids’ period of about 3 days, which was not reported before. This phenomenon is most likely explained by the depopulation of second and third crossing classical Cepheids in the faint part of the IS, since blue loops of evolutionary tracks in this mass range do not extend blueward enough to cross the IS at the LMC metallicity. Furthermore, our empirical borders show good agreement with theoretical ones published in the literature. This proves that our empirical IS is a useful tool to put constraints on theoretical models.
Current searches for galaxy-scale strong lenses focus on massive Luminous Red Galaxies but tend to overlook late-type lenses, in part because of their smaller Einstein radii. We take advantage of the superb seeing of the UNIONS survey in the r-band to perform an imaging search for edge-on late-type lenses. We use Convolutional Neural Networks trained with simulated observations composed of images of real galaxies from UNIONS and real sources from HST. Using 3600 square degrees of the survey we test ∼7 million galaxies and find 56 systems with obvious signs of lensing. In addition, we empirically estimate the true prevalence of lenses in UNIONS by visually inspecting 120,000 randomly chosen images in the survey. We find that the number of edge-on lenses we discover with CNNs is compatible with these estimates.
Our knowledge of stellar evolution relies on constraints provided by measurements of the physical stellar properties such as the mass, effective temperature, and radii. The most fundamental parameter, the stellar mass, is rarely available or has a low accuracy, providing poor constraints on the stellar structure and evolution. Observing binary stars combining astrometry and spectroscopy offers the unique opportunity to measure very precise masses. In addition, double-lined spectroscopic binaries provide independent distance measurements with an extreme accuracy, allowing to test the Gaia parallaxes and the period-luminosity (P-L) relations. I will show that masses and distances with an accuracy level as high as 0.05% can be obtained by combining interferometric and spectroscopic observations for different types of binary systems, i.e. binary Cepheids, eclipsing and non-eclipsing binaries.
Recently, remarkable progress has been made in understanding the formation of high mass stars. Observations provided direct evidence that massive young stellar objects (MYSOs), analogously to low-mass ones, form via disk-mediated accretion accompanied by episodic accretion bursts, possibly caused by disk fragmentation. In the case of MYSOs, the mechanism theoretically provides a means to overcome radiation pressure, but in practice it is poorly studied - only three accretion bursts in MYSOs have been caught in action to date. A significant contribution to the development of the theory has been made with the study of masers, which have proven to be a powerful tool for locating “bursting” MYSOs. This overview focuses on the exceptional role that masers play in the search and study of accretion bursts in massive protostars.
Disentangling the structural components of the Milky Way requires knowledge of distances to various classes of objects, both young, which trace the Galactic disk, and old, which trace the Galactic bulge and halo. Variable stars that obey period-luminosity relations are perfect distance indicators for such studies. Here we discuss recent findings on the structure of our galaxy, inferred from period-luminosity relations for both young, old and intermediate-age variable stars, including Cepheids, RR Lyrae stars, δ Scuti stars, and long-period variables.
If water megamaser disk activity is intimately related to the circumnuclear activity from accreting supermassive black holes, a thorough understanding of the co-evolution of galaxies with their central black holes should consider the degree to which the maser production correlates with traits of their host galaxies. This contribution presents an investigation of multiwavelength nuclear and host properties of galaxies with and without water megamasers, that reveals a rather narrow multi-dimensional parameter space associated with the megamaser emission. This “goldilocks” region embodies the availability of gas, the degree of dusty obscuration and reprocessing of the central emission, the black hole mass, and the accretion rate, suggesting that the disk megamaser emission in particular is linked to a short-lived phase in the intermediate-mass galaxy evolution, providing new tools for both 1) further constraining the growth process of the incumbent AGN and its host galaxy, and 2) significantly boosting the maser disk detection by efficiently confining the 22 GHz survey parameters.
We highlight a few results from ALMA Band 6 observations of high-rotational transition number (J) SiO masers towards oxygen-rich AGB and red supergiant stars carried out as part of the ATOMIUM Large Programme in 2018–2020. A search for a relationship between mass-loss rates and flux-weighted mean angular distances of maser components was inconclusive, as linear regression models for the 28SiO v=1 J =5–4 and J =6–5 transitions were inconsistent. Supplementary APEX observations towards the ATOMIUM AGB stars also suggest variability at different stellar pulsation phases.
The 6.7 GHz methanol maser emitted by a high-mass star forming region G33.641-0.228 is known to exhibit fast flux density variability on timescales of less than one day. The mechanism of this variability, called burst, has not been known. We observed the circular polarization of this maser. As a result, we found that only the spectral components representing burst exhibit strong circular polarization exceeding 10%. This suggests that the two phenomena of the burst and circular polarization are related to each other.
Maser effects occur in recombination lines when the plasma departs from local thermodynamic equilibrium (LTE). Its consequence is not as dramatic as that found in molecular masers, and therefore it is more difficult to recognize. Besides, it occurs in compact high density regions, and its lines fall at millimeter and submillimeter wavelengths, only recently available with good angular resolution. This review will focus on the theoretical aspects of maser recombination lines and on the recent detection of these masers in different astronomical objects.
We present new theoretical period–luminosity (PL) and period–radius (PR) relations at multiple wavelengths (Johnson–Cousins–Glass and Gaia passbands) for a fine grid of BL Herculis models computed using mesa-rsp. The non-linear models were computed for periods typical of BL Her stars, i.e. 1 ≤ P(days) ≤ 4, covering a wide range of input parameters: metallicity (−2.0 dex ≤ [Fe/H] ≤ 0.0 dex), stellar mass (0.5–0.8 ), luminosity (50–300 ) and effective temperature (full extent of the instability strip; in steps of 50K). We investigate the impact of four sets of convection parameters on multi-wavelength properties. Most empirical relations match well with theoretical relations from the BL Her models computed using the four sets of convection parameters. No significant metallicity effects are seen in the PR relations. Another important result from our grid of BL Her models is that it supports combining PL relations of RR Lyrae and Type II Cepheids together as an alternative to classical Cepheids for the extragalactic distance scale calibration.
We combine JWST/NIRCam imaging and MUSE data to characterize the properties of galaxies in the cluster Abell2744 (z=0.3064) and in its immediate surroundings. We discover a “red-excess” population in F200W–F444W colors in both the cluster regions and the field. These galaxies have normal F115W-F150W colors and rather blue rest frame B–V colors, but are up to 0.8 mag redder than red sequence galaxies in F200W–F444W. Considering morphology, many cluster galaxies show signatures consistent with ram pressure stripping, while field galaxies have features resembling interactions and mergers. Our hypothesis is that these galaxies are characterized by dust enshrouded star formation: a JWST/NIRSpec spectrum for one of the galaxies is dominated by a strong PAH at 3.3 μm, suggestive of dust obscured star formation.
The mass of the black hole separated from the mass of the maser disk is calculated using the mega-maser technique for 15 maser-galaxies and the corresponding Magorrian relationship (inline1) is analysed.
Strong gravitational lensing by galaxies provides us with a powerful laboratory for testing dark matter models. Various particle models for dark matter give rise to different small-scale distributions of mass in the lens galaxy, which can be differentiated with sensitive observations. Th. The sensitivity of a gravitational lens observation to the presence (or absence) of low-mass dark structures in the lens galaxy is determined mainly by the angular resolution of the instrument and the spatial structure of the source. Here, I discuss results from the analysis of a global VLBI observation of a gravitationally lensed radio jet. With an angular resolution better than 5 milli-arcseconds and a highly extended, spatially resolved source, we are able to place competitive constraints on the particle mass in fuzzy dark matter models using this single observation. I also discuss preliminary results from our analysis of warm dark matter models using this lens system.