Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:01:06.506Z Has data issue: false hasContentIssue false

Lensed radio arcs at milli-arcsecond resolution: Methods, science results, and current status

Published online by Cambridge University Press:  04 March 2024

Devon M. Powell*
Affiliation:
Max Planck Institute for Astrophysics.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Strong gravitational lensing by galaxies provides us with a powerful laboratory for testing dark matter models. Various particle models for dark matter give rise to different small-scale distributions of mass in the lens galaxy, which can be differentiated with sensitive observations. Th. The sensitivity of a gravitational lens observation to the presence (or absence) of low-mass dark structures in the lens galaxy is determined mainly by the angular resolution of the instrument and the spatial structure of the source. Here, I discuss results from the analysis of a global VLBI observation of a gravitationally lensed radio jet. With an angular resolution better than 5 milli-arcseconds and a highly extended, spatially resolved source, we are able to place competitive constraints on the particle mass in fuzzy dark matter models using this single observation. I also discuss preliminary results from our analysis of warm dark matter models using this lens system.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Angulo, R. E., Hahn, O., Ludlow, A. D., & Bonoli, S. 2017, Earth-mass haloes and the emergence of NFW density profiles. MNRAS, 471(4), 46874701.CrossRefGoogle Scholar
Benson, A. J., Farahi, A., Cole, S., Moustakas, L. A., Jenkins, A., Lovell, M., Kennedy, R., Helly, J., & Frenk, C. 2013, Dark matter halo merger histories beyond cold dark matter - I. Methods and application to warm dark matter. MNRAS, 428(2), 17741789.Google Scholar
Cao, X., Li, R., Nightingale, J. W., Massey, R., Robertson, A., Frenk, C. S., Amvrosiadis, A., Amorisco, N. C., He, Q., Etherington, A., Cole, S., & Zhu, K. 2022, Systematic Errors Induced by the Elliptical Power-law model in Galaxy-Galaxy Strong Lens Modeling. Research in Astronomy and Astrophysics, 22(2), 025014.CrossRefGoogle Scholar
Gilman, D., Agnello, A., Treu, T., Keeton, C. R., & Nierenberg, A. M. 2017, Strong lensing signatures of luminous structure and substructure in early-type galaxies. MNRAS, 467(4), 39703992.Google Scholar
Gilman, D., Birrer, S., Nierenberg, A., Treu, T., Du, X., & Benson, A. 2020, Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. MNRAS, 491(4), 60776101.CrossRefGoogle Scholar
He, Q., Nightingale, J., Massey, R., Robertson, A., Amvrosiadis, A., Cole, S., Frenk, C. S., Li, R., Amorisco, N. C., Metcalf, R. B., Cao, X., & Etherington, A. 2022, Testing strong lensing subhalo detection with a cosmological simulation. arXiv e-prints, arXiv:2202.10191.Google Scholar
Hezaveh, Y., Dalal, N., Holder, G., Kisner, T., Kuhlen, M., & Perreault Levasseur, L. 2016,a Measuring the power spectrum of dark matter substructure using strong gravitational lensing. J. Cosmology Astropart. Phys., 2016a(11), 048.Google Scholar
Hezaveh, Y. D., Dalal, N., Marrone, D. P., Mao, Y.-Y., Morningstar, W., Wen, D., Blandford, R. D., Carlstrom, J. E., Fassnacht, C. D., Holder, G. P., Kemball, A., Marshall, P. J., Murray, N., Perreault Levasseur, L., Vieira, J. D., & Wechsler, R. H. 2016,b Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. ApJ, 823b, 37.Google Scholar
Hsueh, J.-W., Despali, G., Vegetti, S., Xu, D., Fassnacht, C. D., & Metcalf, R. B. 2018, Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation. MNRAS, 475(2), 24382451.CrossRefGoogle Scholar
Kochanek, C. S. 2021, Overconstrained models of time delay lenses redux: how the angular tail wags the radial dog. MNRAS, 501(4), 50215028.CrossRefGoogle Scholar
Laroche, A., Gilman, D., Li, X., Bovy, J., & Du, X. 2022, Quantum fluctuations masquerade as haloes: bounds on ultra-light dark matter from quadruply imaged quasars. MNRAS, 517(2), 18671883.CrossRefGoogle Scholar
Ludlow, A. D., Bose, S., Angulo, R. E., Wang, L., Hellwing, W. A., Navarro, J. F., Cole, S., & Frenk, C. S. 2016, The mass-concentration-redshift relation of cold and warm dark matter haloes. MNRAS, 460(2), 12141232.CrossRefGoogle Scholar
McKean, J., Jackson, N., Vegetti, S., Rybak, M., Serjeant, S., Koopmans, L. V. E., Metcalf, R. B., Fassnacht, C., Marshall, P. J., & Pandey-Pommier, M. Strong Gravitational Lensing with the SKA. In Advancing Astrophysics with the Square Kilometre Array (AASKA14) 2015, 84.CrossRefGoogle Scholar
O’Riordan, C. M., Despali, G., Vegetti, S., Lovell, M. R., & Moliné, Á. 2023, Sensitivity of strong lensing observations to dark matter substructure: a case study with Euclid. MNRAS, 521(2), 23422356.CrossRefGoogle Scholar
Powell, D., Vegetti, S., McKean, J. P., Spingola, C., Rizzo, F., & Stacey, H. R. 2021, A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution. MNRAS, 501(1), 515530.CrossRefGoogle Scholar
Powell, D. M., Vegetti, S., McKean, J. P., Spingola, C., Stacey, H. R., & Fassnacht, C. D. 2022, A lensed radio jet at milliarcsecond resolution I: Bayesian comparison of parametric lens models. MNRAS, 516(2), 18081828.CrossRefGoogle Scholar
Powell, D. M., Vegetti, S., McKean, J. P., White, S. D. M., Ferreira, E. G. M., May, S., & Spingola, C. 2023, A lensed radio jet at milli-arcsecond resolution - II. Constraints on fuzzy dark matter from an extended gravitational arc. MNRAS, 524(1), L84–L88.Google Scholar
Schive, H.-Y., Liao, M.-H., Woo, T.-P., Wong, S.-K., Chiueh, T., Broadhurst, T., & Hwang, W. Y. P. 2014, Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett., 113(26), 261302.CrossRefGoogle ScholarPubMed
Spingola, C., McKean, J. P., Auger, M. W., Fassnacht, C. D., Koopmans, L. V. E., Lagattuta, D. J., & Vegetti, S. 2018, SHARP - V. Modelling gravitationally lensed radio arcs imaged with global VLBI observations. MNRAS, 478(4), 4816–4829.Google Scholar
Van de Vyvere, L., Gomer, M. R., Sluse, D., Xu, D., Birrer, S., Galan, A., & Vernardos, G. 2022, TDCOSMO. VII. Boxyness/discyness in lensing galaxies: Detectability and impact on H0. A&A, 659, A127.Google Scholar
Vegetti, S. & Koopmans, L. V. E. 2009, Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in Galaxies. MNRAS, 392(3), 945963.CrossRefGoogle Scholar
Vegetti, S., Koopmans, L. V. E., Auger, M. W., Treu, T., & Bolton, A. S. 2014, Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses. MNRAS, 442(3), 20172035.CrossRefGoogle Scholar
Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T., & Gavazzi, R. 2010, Detection of a dark substructure through gravitational imaging. MNRAS, 408(4), 19691981.CrossRefGoogle Scholar
Vegetti, S., Lagattuta, D. J., McKean, J. P., Auger, M. W., Fassnacht, C. D., & Koopmans, L. V. E. 2012, Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature, 481(7381), 341343.CrossRefGoogle ScholarPubMed