No CrossRef data available.
Published online by Cambridge University Press: 07 February 2024
If water megamaser disk activity is intimately related to the circumnuclear activity from accreting supermassive black holes, a thorough understanding of the co-evolution of galaxies with their central black holes should consider the degree to which the maser production correlates with traits of their host galaxies. This contribution presents an investigation of multiwavelength nuclear and host properties of galaxies with and without water megamasers, that reveals a rather narrow multi-dimensional parameter space associated with the megamaser emission. This “goldilocks” region embodies the availability of gas, the degree of dusty obscuration and reprocessing of the central emission, the black hole mass, and the accretion rate, suggesting that the disk megamaser emission in particular is linked to a short-lived phase in the intermediate-mass galaxy evolution, providing new tools for both 1) further constraining the growth process of the incumbent AGN and its host galaxy, and 2) significantly boosting the maser disk detection by efficiently confining the 22 GHz survey parameters.