Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:31:06.807Z Has data issue: false hasContentIssue false

JWST unveils a population of “red-excess” galaxies in Abell2744 and in the coeval field

Published online by Cambridge University Press:  13 February 2024

Benedetta Vulcani*
Affiliation:
INAF Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We combine JWST/NIRCam imaging and MUSE data to characterize the properties of galaxies in the cluster Abell2744 (z=0.3064) and in its immediate surroundings. We discover a “red-excess” population in F200W–F444W colors in both the cluster regions and the field. These galaxies have normal F115W-F150W colors and rather blue rest frame B–V colors, but are up to 0.8 mag redder than red sequence galaxies in F200W–F444W. Considering morphology, many cluster galaxies show signatures consistent with ram pressure stripping, while field galaxies have features resembling interactions and mergers. Our hypothesis is that these galaxies are characterized by dust enshrouded star formation: a JWST/NIRSpec spectrum for one of the galaxies is dominated by a strong PAH at 3.3 μm, suggestive of dust obscured star formation.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bacon et al. 2017, A&A, 608, 1 Google Scholar
Bezanson et al. 2022, arXiv:2212.04026Google Scholar
Boselli & Gavazzi 2006, PASP, 118 517 CrossRefGoogle Scholar
Calzetti 2011, EASPS, 46, 133 CrossRefGoogle Scholar
Cen et al. 2014, PNAS, 111 7914CrossRefGoogle Scholar
Duc et al. 2002, A&A, 382 60CrossRefGoogle Scholar
Gunn & Gott et al. 1972, ApJ, 176 1 CrossRefGoogle Scholar
Hopkins et al. 2008, pJS, 175 356 CrossRefGoogle Scholar
Jachym et al. 2007, A&A, 472 5 Google Scholar
Jauzac et al. 2016, MNRAS, 463 3876 CrossRefGoogle Scholar
Koyama et al. 2008, MNRAS, 391 1758 CrossRefGoogle Scholar
Lotz et al. 2004, ApJ, 672, 177 Google Scholar
Martig & Bournaud 2008, MNRAS, 385L 38 CrossRefGoogle Scholar
Merlin et al. 2022, ApJL, 938, L14 CrossRefGoogle Scholar
Morishita et al. 2022, arXiv:2211.09097Google Scholar
Morishita, T., Roberts-Borsani, G., Treu, T. et al. 2023, ApJ, 947, L24 Google Scholar
Owers et al. 2011, ApJ, 728 270 CrossRefGoogle Scholar
Papovich et al. 2007, ApJ, 668, 45 CrossRefGoogle Scholar
Paris et al. 2023, arXiv:2301.0217PGoogle Scholar
Pawlik et al. 2016, MNRAS 456, 3032 CrossRefGoogle Scholar
Peeters et al. 2004, ApJ, 613, 986 CrossRefGoogle Scholar
Prieto-Lyon et al. 2022, arXiv:2211.12548Google Scholar
Richard et al. 2021, A&A, 646, 83 CrossRefGoogle Scholar
Santini et al. 2023, ApJL, 942, 27 Google Scholar
Schweitzer et al. 2006, ApJ, 649, 79 CrossRefGoogle Scholar
Smail et al. 1997, ApJ, 490L 5 Google Scholar
Spoon et al. 2004, A&A, 414, 873 CrossRefGoogle Scholar
Treu et al. 2022, ApJ, 935 110 Google Scholar
Valentinuzzi et al. 2011 A&A, 536, 34CrossRefGoogle Scholar
Voit 1992, MNRAS,258, 841CrossRefGoogle Scholar
Vulcani et al. 2022, ApJ, 927, 91 CrossRefGoogle Scholar
Yan et al. 2005, ApJ, 628 604CrossRefGoogle Scholar