We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ALMA-ALPINE [CII] survey (A2C2S) aims at characterizing the properties of normal star-forming galaxies (SFGs) observed in the [CII]-158μm line in the period of rapid mass assembly at redshifts 4 < z < 6. Here we present the survey and the selection of 118 galaxies observed with ALMA, selected from large samples of galaxies with spectroscopic redshifts derived from UV-rest frame. The observed properties derived from the ALMA data are presented and discussed in terms of the overall detection rate in [CII] and far-IR continuum. The sample is representative of the SFG population at these redshifts. The overall detection rate is 61% down to a flux limit of 0.07 mJy. From a visual inspection of the [CII] data cubes together with the large wealth of ancillary data we find a surprisingly wide range of galaxy types, including 32.4% mergers, 25.7% extended and dispersion dominated, 13.5% rotating discs, and 16.2% compact, the remaining being too faint to be classified. ALPINE sets a reference sample for the gas distribution in normal star-forming galaxies at a key epoch in galaxy assembly, ideally suited for studies with future facilities like JWST and ELTs.
An interesting problem in plasma physics, when approached from the point of view of Statistical Mechanics is to obtain properties of collisionless plasmas, which are described by the Vlasov equation. Through what we call the Ehrenfest procedure, which uses statistical mechanical relations we obtain expectation value relations for arbitrary observables, which allows us to study the dynamics of the Earth's Outer Radiation Belt. Focusing on the velocity fluctuations, the width of the distribution function and the pitch angle, a computer simulation was performed to describe the system in order to compare and test the Ehrenfest approach. Our results show that the change in the average width of the distribution follows the analytical relation. However, for the velocity fluctuation results are not conclusive yet and require more exploration. It remains as future work to verify the relation for the pitch angle.
With the LAMOST DR4 and Gaia DR2 common red clump giant stars, we investigate the three-dimensional kinematics of Milky Way disk stars in mono-age populations between Galactocentric distances of R = 6 and 15 kpc. We confirm the 3D asymmetrical motions of recent works, and provide time tagging of the Galactic outer disk asymmetrical motions. Radial motions present a north-south asymmetry in the region corresponding to recent density and velocity substructures that were sensitive to the perturbations in the early 6 Gyr. What’s more, we discover a new velocity substructure in the north side corresponding to density dip found recently (“south-middle opposite”) in the radial and azimuthal velocity. Meanwhile, the vertical velocity with clear vertical bulk motions or bending mode motions has no clear asymmetry corresponding to the in-plane asymmetrical features.
The birth of stars and the formation of galaxies are cornerstones of modern astrophysics. While much is known about how galaxies globally and their stars individually form and evolve, one fundamental property that affects both remains elusive. This is problematic because this key property, the stellar initial mass function (IMF), is a key tracer of the physics of star formation that underpins almost all of the unknowns in galaxy and stellar evolution. It is perhaps the greatest source of systematic uncertainty in star and galaxy evolution. The past decade has seen a growing number and variety of methods for measuring or inferring the shape of the IMF, along with progressively more detailed simulations, paralleled by refinements in the way the concept of the IMF is applied or conceptualised on different physical scales. This range of approaches and evolving definitions of the quantity being measured has in turn led to conflicting conclusions regarding whether or not the IMF is universal. Here I summarise the growing wealth of approaches to our understanding of this fundamental property that defines so much of astrophysics, and highlight the importance of considering potential IMF variations, reinforcing the need for measurements to quantify their scope and uncertainties carefully. I present a new framework to aid the discussion of the IMF and promote clarity in the further development of this fundamental field.
I would like to present an overview of red supergiants (RSGs) in the Milky Way. There are only about 1400 objects listed as RSGs in the spectroscopic catalog by Skiff (2014); moreover, we are not sure yet about how they formed and where they formed. Indeed, most of them are strangely found in isolation, while extraordinary massive clusters of RSGs are observed at the near-end of the Galactic Bar. This intriguing overdensity poses some questions about the continuity of star formation in the Galactic Disk.
Here, we explore the enrichment of Lithium in the Galaxy using a large sample of stars common among large spectroscopic surveys such as the GALAH and astrometric survey by the Gaia satellite. For this study we used about 60,000 low mass (M⩽ 2M⊙) dwarfs from the GALAH survey. Further, we discuss Li enrichment among giant stars based on a sample of 52,000 low mass giants, of which 335 are Li-rich with A(Li) ⩾ 1.80 ± 0.14 dex, culled from the GALAH survey. These low mass giants appears to be one of the promising source of Li enrichment in the Galaxy as their atmospheric Li can be added to the ISM through mass loss.
We present the recent discovery of new halo structures in the Milky Way (MW) based on the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). HSC is a wide-field imager installed at the prime focus of the Subaru Telescope, and a 300-night survey with this instrument is being carried out in this program. The combination of the superb image quality and depth and the fact that it is a multi-band survey allows us to identify new faint satellites as well as field halo stars in the outskirts of the MW halo beyond the reach of previous surveys. We report here on the new insights into the nature of both stellar and dark halos in the MW as revealed from this on-going survey program and show prospects based on the upcoming large spectroscopic survey with Subaru Prime Focus Spectrograph.
Evolution and the formation of bars in the galactic disks is studied in the context of Modified Gravity (MOG) by using N-body simulations. It is found that changing the value of free parameters of the model can effectively alter the strength of the bar and disk’s stability.
Spectroscopic observations of galaxies at high redshift has recently been revolutionised by the Multi Unit Spectroscopic Explorer (MUSE) instrument in operation at the VLT since 2014. Thanks to its unrivalled capabilities, MUSE has been able to increase by an order of magnitude the number of spectroscopic redshifts in these fields. The most spectacular increase is at high redshift (z > 3), where MUSE was able to detect thousands of Lyman-alpha emitters. In the deepest exposures, MUSE is even able to goes beyond the limiting magnitude of the deepest HST exposures. These observations have led to a breakthrough in our understanding of the high redshift universe: e.g. the discovery of Lyman-alpha emission from the circumgalactic medium around individual galaxies, the role and property of low mass galaxies. In this talk I will present the latest results obtained with the MUSE observations of the Hubble deep and ultra-deep fields.
The unprecedented amount and accuracy of kinematic data from the second release of the Gaia mission have started revolutionizing our understanding of the dynamics of the Milky Way disk. The detailed stellar velocity field in the Galactic disk should allow us to constrain with unprecedented precision the parameters of the non-axisymmetric modes of the disk. We present here the status of our current modelling efforts in this area, and their implication on the dynamics of the Galactic bar in particular.
We present observations on optical emission lines acquired with the scanning Fabry-Perot interferometer of the observatoire du Mont Mégantic, of the Andromeda galaxy (M31). A 765 order Fabry-Perot were used with a fast readout EM-CCD. From data obtained, kinematic maps and data points for the rotation curve of the innermost part of the galaxy are derived. Several dozen of regions have been scanned with the Fabry-Perot interferometer and narrow band interference filters. The central 10’x10’ were scanned with five different filters. Observations have been made in order to get better Hα data for kinematics purposes.
Although the stellar halo accounts for just ∼1% of the total stellar mass of the Milky Way, the kinematics of halo stars can tell us a lot about the origins and evolution of our Galaxy. It has been shown that the high transverse velocity stars in Gaia DR2 reveal a double sequence in the Hertzsprung-Russell (HR) diagram, indicating a duality in the local halo within 1 kpc. We fit these stars by updating the popular Besançon/Galaxia model, incorporating the latest observational results for the stellar halo. We are able to obtain a good match to the Gaia data and provide new constraints on the properties of the disc and halo. In particular, we show that the thick disc contribution to this high velocity tail is small, but not negligible, and likely has an influence on the red sequence of the HR diagram.
This article presents an up-dated analysis of synthetic optical and UV emission lines of simulated galaxies over cosmic time. The strong emission lines are derived from self-consistently coupling novel spectral models accounting for nebular emission from young stars, AGN and Post-AGB stars to cosmological zoom-in as well as large-scale simulations. Investigating the evolution of optical line-ratios in the BPT diagrams, the simulations can successfully reproduce the observed trend of [OIII]/Hβ ratio increasing from low to high redshifts, due to evolving star formation rate and gas metallicity. Standard selection criteria in the BPT diagrams can appropriately distinguish the main ionising source(s) of galaxies at low redshifts, but they are less reliable for metal-poor galaxies, dominating the early Universe. To robustly classify the ionising radiation of such metal-poor galaxies, diagnostic diagrams based on luminosity ratios of UV lines are discussed. The novel interface between simulations and observations is potentially important for the interpretation of high-quality spectra of very distant galaxies to be gathered by next-generation telescopes, such as the James Webb Space Telescope.
Despite significant progress over the past decades, all state-of-the-art population synthesis (PS) codes suffer from deficiencies limiting their potential of gaining sharp insights into the star formation history (SFH) and Chemical Enrichment History (CEH) of star-forming galaxies, i.e. the neglect of nebular continuum and, the lack of a mechanism to ensure consistency between the best-fitting SFH and the observed nebular characteristics (ONC; Balmer-lines, Balmer/Paschen jumps). These introduce biases in their recovered physical properties (stellar mass M* and sSFR). FADO is a novel self-consistent PS code employing genetic optimization, publicly available (http://www.spectralsynthesis.org), capable of identifying the SFH & CEH that reproduce the ONC of a galaxy, alleviating degeneracies in the spectral fits. The current version of FADO (v1.b) uses standard BPT emission-line ratios for the classification of low redshift (z) galaxies. Whereas this permits a reliable distinction between star-forming, Composite, Seyfert and LINERs, it is inapplicable to many intermediate-z galaxies. We present an adaptation of FADO (version v1.c) to classify higher z galaxies employing the “Blue Diagram” (e.g., Lamareille 2010) for which the most prominent blue emission-lines (< [OIII]5007Å) are observable while the Hα and [NII] are inaccessible. FADO v1.c was applied to synthetic spectra simulating the evolution of galaxies formed at higher-z with different SFHs. FADO can recover the physical and evolutionary properties of galaxies, such as M* and mean age/metallicity, with an accuracy significantly better than purely-stellar codes. An outline of FADO v1.c and applications to local and intermediate-z galaxies will be presented.
In this invited talk, we discuss the physics of the lifecycle of dust in the context of galaxy formation simulations. After outlining the basic physical processes, we apply algorithms for the formation, growth, and destruction of dust in the ISM to a state-of-the-art cosmological simulation to develop a model for the evolution of the dust to gas and dust to metals ratios in galaxies. We show that while modern simulations are able to match the observed dust mass function at redshift z = 0, most models underpredict the observed mass function at high-redshift (z = 2). We then show the power of these techniques by expanding our model to include a spectrum of dust sizes, and make initial predictions for extinction laws in local galaxies.
I review the current status of dynamical modelling of dwarf spheroidal galaxies focusing on estimates of their dark matter content. Starting with the simplest methods using the velocity dispersion profiles I discuss the inherent issues of mass-anisotropy degeneracy and contamination by unbound stars. I then move on to methods of increasing complexity, aiming to break the degeneracy, up to recent applications of the Schwarzschild orbit superposition method. The dynamical modelling is placed in the context of possible scenarios for the formation of dwarf spheroidal galaxies, including the tidal stirring model and mergers of dwarf galaxies. The two scenarios are illustrated with examples from simulations: a comparison between the tidal evolution of dwarfs with cuspy and cored dark matter profiles and the formation of a dwarf spheroidal with prolate rotation.
Current state-of-the-art computational modeling makes it possible to build realistic models of stellar convection zones and atmospheres that take into account chemical composition, radiative effects, ionization, and turbulence. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of the stellar interior dynamics. Mixing-length models provide an initial approximation of stellar structure that can be used to initialize 3D radiative hydrodynamics simulations which include realistic modeling of turbulence, radiation, and other phenomena.
In this paper, we present 3D radiative hydrodynamic simulations of an F-type main-sequence star with 1.47 solar mass. The computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The effects of stellar rotation is modeled in the f-plane approximation. These simulations provide new insight into the properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, and the structure and dynamics of granulation. They reveal solar-type differential rotation and latitudinal dependence of the tachocline location.
We have entered an era where the gas mass estimates of distant galaxies do not rely on a single tracer but rather on an inventory of different and independent methods, much like the case for the determination of the star formation rate (SFR) of the galaxies. This is crucial as the traditional Mgas tracers, i.e. low-J CO transition lines and dust continuum emission are becoming highly uncertain as we move to higher redshifts due to metallicity and CMB effects. Here, we present a homogeneous and statistically significant investigation of the use of atomic carbon as an alternative Mgas tracer (Valentino et al.2018) and provide evidence of optically thick far-IR emission in high−z starbursts that point towards higher dust temperatures and lower dust and gas mass estimates than previously inferred (Cortzen et al.2019, submitted). Finally, we present direct observations of the effect of the CMB on the far-IR SEDs of high-z SBs, manifested by unphyscally large (β = 2.5–3.5) apparent spectral indexes in R-J tail (Jin et al. 2019, submitted).
How galaxies reionized the universe remains an open question, but we can gain insights from the low-redshift Green Pea galaxies, one of the only known populations of Lyman continuum (LyC) emitters. Using VLA H i 21 cm observations and HST UV spectra of Green Peas, we investigate how neutral gas content and geometry influence LyC and Lyα escape. Our results suggest that LyC Emitters may have high ratios of star formation rate to H i mass. Low gas covering fractions are common among the population, but not all sightlines are optically thin. Based on the observed relationship between high ionization parameters, low metallicities, and narrow Lyα profiles, we propose that weak stellar feedback at low metallicities results in a gas geometry of dense clumps within a low-density medium, which facilitates Lyα and LyC escape. We address the implications of these results for identifying LyC emitters at high redshift with JWST and ALMA.
We present our ongoing work of using two independent tracers to estimate the supermassive black hole mass in the nearby early-type galaxy NGC 6958; namely integrated stellar and molecular gas kinematics. We used data from the Atacama Large Millimeter/submillimeter Array (ALMA), and the adaptive-optics assisted Multi-Unit Spectroscopic Explorer (MUSE) and constructed state-of-the-art dynamical models. The different methods provide black hole masses of (2.89±2.05)×108M⊙ from stellar kinematics and (1.35±0.09)×108M⊙ from molecular gas kinematics which are consistent within their 3σ uncertainties. Compared to recent MBH - σe scaling relations, we derive a slightly over-massive black hole. Our results also confirm previous findings that gas-based methods tend to provide lower black hole masses than stellar-based methods. More black hole mass measurements and an extensive analysis of the method-dependent systematics are needed in the future to understand this noticeable discrepancy.