Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T19:11:47.951Z Has data issue: false hasContentIssue false

Modeling dust in a universe of galaxies

Published online by Cambridge University Press:  04 June 2020

Desika Narayanan
Affiliation:
Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL, 32611, USA email: [email protected] University of Florida Informatics Institute, 432 Newell Drive, CISE Bldg E251, Gainesville, FL, 32611, USA Cosmic Dawn Centre, Niels Bohr Institute, University of Copenhagen and DTU-Space, Technical University of Denmark
Qi Li
Affiliation:
Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL, 32611, USA email: [email protected]
Romeel Davé
Affiliation:
Institute for Astronomy, Royal Observatory, University of Edinburgh, Edinburgh, EH9 3HJ, UK University of the Western Cape, Bellville, Cape Town, 7535, South Africa South African Astronomical Observatories, Observatory, Cape Town, 7925, South Africa
Charlie Conroy
Affiliation:
Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA, 02138, USA
Benjamin D. Johnson
Affiliation:
Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA, 02138, USA
Gergo Popping
Affiliation:
European Southern Observatory, Karl-Schartzchild-Strasse 2, 85748, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this invited talk, we discuss the physics of the lifecycle of dust in the context of galaxy formation simulations. After outlining the basic physical processes, we apply algorithms for the formation, growth, and destruction of dust in the ISM to a state-of-the-art cosmological simulation to develop a model for the evolution of the dust to gas and dust to metals ratios in galaxies. We show that while modern simulations are able to match the observed dust mass function at redshift z = 0, most models underpredict the observed mass function at high-redshift (z = 2). We then show the power of these techniques by expanding our model to include a spectrum of dust sizes, and make initial predictions for extinction laws in local galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abruzzo, M. W., Narayanan, D., Davé, R., et al. 2018, arXiv e-prints, arXiv:1803.02374Google Scholar
Asano, R. S., Takeuchi, T. T., Hirashita, H., et al. 2013, MNRAS, 432, 63710.1093/mnras/stt506CrossRefGoogle Scholar
Aoyama, S., Hou, K.-C., Hirashita, H., et al. 2018, MNRAS, 478, 490510.1093/mnras/sty1431CrossRefGoogle Scholar
Beeston, R. A., Wright, A. H., Maddox, S., et al. 2018, MNRAS, 479, 107710.1093/mnras/sty1460CrossRefGoogle Scholar
Bianchi, S. & Schneider, R. 2007, MNRAS, 378, 97310.1111/j.1365-2966.2007.11829.xCrossRefGoogle Scholar
Casey, C. M., Narayanan, D., & Cooray, A. 2014, PhR, 541, 45Google Scholar
Clemens, M. S., Negrello, M., De Zotti, G., et al. 2013, MNRAS, 433, 69510.1093/mnras/stt760CrossRefGoogle Scholar
Conroy, C. 2013, ARA&A, 51, 39310.1146/annurev-astro-082812-141017CrossRefGoogle Scholar
Davé, R., Thompson, R., & Hopkins, P. F. 2016, MNRAS, 462, 326510.1093/mnras/stw1862CrossRefGoogle Scholar
Davé, R., Anglés-Alcázar, D., Narayanan, D., et al. 2019, MNRAS, 486, 282710.1093/mnras/stz937CrossRefGoogle Scholar
De Vis, P., Jones, A., Viaene, S., et al. 2019, A&A, 623, A5Google Scholar
Draine, B. T. 2003, ApJ, 598, 101710.1086/379118CrossRefGoogle Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium by Bruce T. Draine. Princeton University Press10.1515/9781400839087CrossRefGoogle Scholar
Dunne, L., Eales, S. A., & Edmunds, M. G. 2003, MNRAS, 341, 58910.1046/j.1365-8711.2003.06440.xCrossRefGoogle Scholar
Dunne, L., Gomez, H. L., da Cunha, E., et al. 2011, MNRAS, 417, 151010.1111/j.1365-2966.2011.19363.xCrossRefGoogle Scholar
Dwek, E. 1998, ApJ, 501, 64310.1086/305829CrossRefGoogle Scholar
Eales, S., Chapin, E. L., Devlin, M. J., et al. 2009, ApJ, 707, 177910.1088/0004-637X/707/2/1779CrossRefGoogle Scholar
Ferrarotti, A. S. & Gail, H.-P. 2006, A&A, 447, 553Google Scholar
Goldsmith, P. F. 2001, ApJ, 557, 73610.1086/322255CrossRefGoogle Scholar
Hirashita, H. 2015, MNRAS, 447, 293710.1093/mnras/stu2617CrossRefGoogle Scholar
Hou, K.-C., Hirashita, H., Nagamine, K., et al. 2017, MNRAS, 469, 87010.1093/mnras/stx877CrossRefGoogle Scholar
Hou, K.-C., Aoyama, S., Hirashita, H., et al. 2019, MNRAS, 485, 172710.1093/mnras/stz121CrossRefGoogle Scholar
Hopkins, P. F., Wetzel, A., Kereš, D., et al. 2018, MNRAS, 480, 80010.1093/mnras/sty1690CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 699, 85010.1088/0004-637X/699/1/850CrossRefGoogle Scholar
Hayward, C. C., Narayanan, D., Kereš, D., et al. 2013, MNRAS, 428, 252910.1093/mnras/sts222CrossRefGoogle Scholar
Hopkins, P. F. 2014, GIZMO: Multi-method magneto-hydrodynamics+gravity code, ascl:1410.003Google Scholar
Lagos, C.del, P., Robotham, A. S. G., Trayford, J. W., et al. 2019, arXiv e-prints, arXiv:1908.03423Google Scholar
Li, Q., Narayanan, D., & Davé, R. 2019, arXiv e-prints, arXiv:1906.09277Google Scholar
Marrone, D. P., Spilker, J. S., Hayward, C. C., et al. 2018, Nature, 553, 5110.1038/nature24629CrossRefGoogle Scholar
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 42510.1086/155591CrossRefGoogle Scholar
McKinnon, R., Torrey, P., & Vogelsberger, M. 2016, MNRAS, 457, 377510.1093/mnras/stw253CrossRefGoogle Scholar
McKinnon, R., Vogelsberger, M., Torrey, P., et al. 2018, MNRAS, 478, 285110.1093/mnras/sty1248CrossRefGoogle Scholar
Narayanan, D., Hayward, C. C., Cox, T. J., et al. 2010, MNRAS, 401, 161310.1111/j.1365-2966.2009.15790.xCrossRefGoogle Scholar
Narayanan, D., Turk, M., Feldmann, R., et al. 2015, Nature, 525, 49610.1038/nature15383CrossRefGoogle Scholar
Narayanan, D. & Krumholz, M. R. 2017, MNRAS, 467, 5010.1093/mnras/stw3218CrossRefGoogle Scholar
Narayanan, D., Conroy, C., Davé, R., et al. 2018, ApJ, 869, 7010.3847/1538-4357/aaed25CrossRefGoogle Scholar
Nozawa, T., Kozasa, T., Habe, A., et al. 2007, ApJ, 666, 95510.1086/520621CrossRefGoogle Scholar
Popping, G., Somerville, R. S., & Galametz, M. 2017, MNRAS, 471, 315210.1093/mnras/stx1545CrossRefGoogle Scholar
Privon, G. C., Narayanan, D., & Davé, R. 2018, ApJ, 867, 10210.3847/1538-4357/aae485CrossRefGoogle Scholar
Rémy-Ruyer, A., Madden, S. C., Galliano, F., et al. 2014, A&A, 563, A31Google Scholar
Smith, B. D., Bryan, G. L., Glover, S. C. O., et al. 2017, MNRAS, 466, 221710.1093/mnras/stw3291CrossRefGoogle Scholar
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192, 910.1088/0067-0049/192/1/9CrossRefGoogle Scholar
Vijayan, A. P., Clay, S. J., Thomas, P. A., et al. 2019, arXiv:1904.02196Google Scholar
Vogelsberger, M., McKinnon, R., O’Neil, S., et al. 2019, MNRAS, 487, 487010.1093/mnras/stz1644CrossRefGoogle Scholar
Watson, D. 2011, A&A, 533, A16Google Scholar
Walcher, J., Groves, B., Budavári, T., et al. 2011, Ap&SS, 331, 1Google Scholar