We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Over 2/3 of all star formation in the Universe occurs in gas-rich, super-high pressure clumpy galaxies in the epoch of redshift z ∼ 1 – 3. However, because these galaxies are so distant we are limited in the information available to study the properties of star formation and gas in these systems. I will present results using a sample of extremely rare, nearby galaxies (called DYNAMO) that are very well matched in gas fraction (fgas ∼ 20 – 80%), kinematics (rotating disks with velocity dispersions ranging 20 – 100 km/s), structure (exponential disks) and morphology (clumpy star formation) to high-z main-sequence galaxies. We therefore use DYNAMO galaxies as laboratories to study the processes inside galaxies in the dominate mode of star formation in the Universe. In this talk I will report on results from our programs with HST, ALMA, Keck, and NOEMA for DYNAMO galaxies that are aimed at testing models of star formation. We have discovered of an inverse relationship between gas velocity dispersion and molecular gas depletion time. This correlation is directly predicted by theories of feedback-regulated star formation; conversely, predictions of models in which turbulence is driven by gravity only are not consistent with our data. I will also show that feedback-regulated star formation can explain the redshift evolution of galaxy star formation efficiency. I will also present results from a recently acquired map of CO(2-1) in a clumpy galaxy with resolution less than 200 pc. With maps such as these we can begin to study these super giant star forming clumps at scales that are more comparable to local surveys. I will show results for the star formation efficiency of clumps, the boundedness of clumps of molecular gas, and discuss links between star formation efficiency and formation of clumps of stellar mass. The details of clumpy systems are a direct constraint of the results of simulations, especially on the nature of feedback in the high density environments of star formation that dominate the early Universe.
Properties of helioseismic acoustic oscillations (p modes) are modified by flows and magnetic fields in the solar interior, with frequencies, amplitudes and damping rates all varying systematically through the solar cycle. Crucially, now, we have a long enough baseline of helioseismic data to compare of the different activity cycles. We review recent efforts along these lines, from the impact of near-surface magnetic fields on p-mode frequencies to the evolution of the torsional oscillation and meridional circulation. We show that each activity cycle for which we have helioseismic data is slightly different in terms of the relationship between p mode frequencies and atmospheric proxies of activity, and in terms of the rotation and meridional circulation flows. However, many challenges remain, crucially including our ability to constrain flows and magnetic fields in the deep solar interior.
Hot Jupiters are an extraordinary class of exoplanets, orbiting their host stars with periods of hours to a few days. Some of these objects have day-side temperatures approaching photospheric temperatures of late K-type stars. I will give an overview of how we characterize the atmospheres of these fascinating objects and some the more recent exciting results to come from ground and space-based telescopes, as well as what the future holds for detailed characterization of short-period exoplanet atmospheres.
The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has enabled a new era for studies of the formation and assembly of distant galaxies. Cosmological deep field surveys with ALMA and other interferometers have flourished in the last few years covering wide ranges of galaxy properties and redshift, and allowing us to gain critical insights into the physical mechanisms behind the galaxy growth. Here, we present a brief review of recent studies that aim to characterize the interstellar medium properties of galaxies at high redshift (z > 1), focusing on blank-field ALMA surveys of dust continuum and molecular line emission. In particular, we show recent results from the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS) large program.
The JWST Advanced Deep Extragalactic Survey (JADES) is a joint program of the JWST NIRCam and NIRSpec Guaranteed Time Observation (GTO) teams involving over 800 hours of observation. This paper describes the imaging portion of the program which covers nearly 200 square arc minutes divided between two well-studied fields with excellent supporting data (e.g. from Chandra, ALMA, and HST-CANDELS): GOODS North and South, including the Ultra Deep Field. NIRCam imaging will enable the study of galaxy evolution to z ∼ 10 and higher using multi-color imaging with 9 filters covering 0.9 to 5 microns. Such data will provide photometric redshifts and a wealth of data for constructing luminosity and mass functions. A key component of the program is rapid turn around of imaging into NIRSpec target lists. Preparing for this program has benefited from the development of a mock catalog and simulated imaging to test these processes.
We study the evolution of the decaying active region NOAA 12708, from the photosphere up to the corona using high resolution, multi-wavelength GREGOR observations taken on May 9, 2018. We utilize spectropolarimetric scans of the 10830 Å spectral range by the GREGOR Infrared Spectrograph (GRIS), spectral imaging time-series in the Na ID2 spectral line by the GREGOR Fabry-Pérot Interferometer (GFPI) and context imaging in the Ca IIH and blue continuum by the High-resolution Fast Imager (HiFI). Context imaging in the UV/EUV from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) complements our dataset. The region under study contains one pore with a light-bridge, a few micro-pores and extended clusters of magnetic bright points. We study the magnetic structure from the photosphere up to the upper chromosphere through the spectropolarimetric observations in He II and Si I and through the magnetograms provided by the Helioseismic and Magnetic Imager (HMI). The high-resolution photospheric images reveal the complex interaction between granular-scale convective motions and a range of scales of magnetic field concentrations in unprecedented detail. The pore itself shows a strong interaction with the convective motions, which eventually leads to its decay, while, under the influence of the photospheric flow field, micro-pores appear and disappear. Compressible waves are generated, which are guided towards the upper atmosphere along the magnetic field lines of the various magnetic structures within the field-of-view. Modelling of the He i absorption profiles reveals high velocity components, mostly associated with magnetic bright points at the periphery of the active region, many of which correspond to asymmetric Si I Stokes-V profiles revealing a coupling between upper photospheric and upper chromospheric dynamics. Time-series of Na ID2 spectral images reveal episodic high velocity components at the same locations. State-of-the-art multi-wavelength GREGOR observations allow us to track and understand the mechanisms at work during the decay phase of the active region.
We present ALMA [CII] line and far-infrared (FIR) continuum observations of seven z > 6 low-luminosity quasars (M1450 > −25 mag) discovered by our on-going Subaru Hyper Suprime-Cam survey. The [CII] line was detected in all targets with luminosities of ∼(2−10) × 108 L⊙, about one order of magnitude smaller than optically luminous quasars. Also found was a wide scatter of FIR continuum luminosity, ranging from LFIR < 1011L⊙ to ∼2 × 1012L⊙. With the [CII]-based dynamical mass, we suggest that a significant fraction of low-luminosity quasars are located on or even below the local Magorrian relation, particularly at the massive end of the galaxy mass distribution. This is a clear contrast to the previous finding that luminous quasars tend to have overmassive black holes relative to the relation. Our result is expected to show a less-biased nature of the early co-evolution of black holes and their host galaxies.
In order to understand the interaction between dark matter and baryonic matter in the galaxy evolution history, it is fundamental to constrain dark matter (DM) distribution in galaxies. However, it is difficult to constrain DM profile in the central region of early type galaxy because of the lack of extended neutral hydrogen gas and the degeneracy between dynamical stellar M/L and DM profile. To resolve this difficulty, we conducted combined analysis of ALMA cold molecular gas kinematics and MUSE stellar kinematics of early type fast rotator galaxy NGC1380. In addition, we used HST image to trace the stellar luminosity distribution. With the help of high resolution of ALMA image and large field of view of MUSE, we derived the central BH mass, stellar bulge, disk and DM profile.
The recent detections of high-ionization nebular line emission from species including CIV in a number of z > 6 galaxies have highlighted substantial deficiencies in our understanding of metal poor stars. Prominent nebular CIV has never been detected in purely star-forming systems locally, and the massive star models used to model this emission in photoionization codes have not been empirically calibrated below the metallicity of the SMC (20% solar). As a result, we are presently entirely unprepared to correctly interpret nebular emission from metal-poor stars observed with JWST and ALMA in the reionization era. We present results from a multi-pronged ongoing local ultraviolet/optical observation campaign with HST/COS, Keck/ESI, and MMT designed to address this issue by locating and characterizing stellar populations capable of powering such high-ionization emission. This work has already demonstrated that strong nebular CIV can be powered by extremely metal-poor (< 10% solar) massive stars, indicating that we may already have evidence of such low-metallicity populations in the reionization era. However, CIV at the equivalent widths detected at z > 6 remains elusive locally, potentially in part due to the relative paucity of known nearby galaxies at these metallicities with massive stellar populations comparable to those in z > 6 systems. We present a new technique to locate such nearby galaxies, and results from optical follow-up which indicate that a substantial population of highly star- forming metal-poor galaxies likely resides just below the detection limits of previous large spectroscopic surveys.
I present an overview of the JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations (GTO) teams involving 950 hours of observation. We will target two well-studied fields with excellent supporting data (e.g., from HST-CANDELS): GOODS-North and South, including the Ultra Deep Field. The science goal of JADES is to chart galaxy evolution at z > 2, and potentially out to z > 10, using the rest-frame optical and near-IR though observations from ≍ 1–5μm. Multi-colour NIRCam imaging with 9 filters will enable photometric redshifts and the application of the Lyman break technique out to unprecedented distances. NIRSpec spectroscopy (with spectral resolving powers of R = 100, 1000 & 2700) will measure secure spectroscopic redshifts of the photometrically-selected population, as well as stellar continuum slopes in the UV rest-frame, and hence study the role of dust, stellar population age, and other effects. Measuring emission lines can constrain the dust extinction, star formation rates, metallicity, chemical abundances, ionization and excitation mechanism in high redshift galaxies. Coupling NIRCam and NIRSpec observations will determine stellar populations (age, star formation histories, abundances) of galaxies and provide the information to correct their broad-band spectral energy distribution for likely line contamination. Potentially we can search for signatures of Population III stars such as HeII. We can address the contribution of star-forming galaxies at z > 7 to reionization by determining the faint end slope of the luminosity function and investigating the escape fraction of ionizing photons by comparing the UV stellar continuum with the Balmer-line fluxes.
In the quest to study early star-formation physics in the universe, one of the most sought after tracers is HeIIλ1640, with its presence in the lack of other metal emission/absorption lines generally being interpreted as evidence for metal-poor stellar populations. HeII ionizing photons are produced via sources of hard ionizing radiation and requires photons with energies ⩾ 54.4eV, however, traditional stellar population models lack sufficient ionising photons to match with current observations. Our analysis of z = 2 – 4 HeIIλ1640 emitters from deep 10-30h pointings from MUSE has shown that ISM properties inferred from multiple rest-UV diagnostics are not compatible with requirements necessary to reproduce HeIIλ1640 equivalent-widths. Thus, we have used latest generation of single, rotational, and binary stellar population models with realistic dust physics to explore rest-UV emission line diagnostics and link with H and He+ ionisation photon production efficiencies (ξion (H,He+)) in a variety of stellar/gas metallicities and star-formation histories. I will discus our latest results and show that including ‘exotic’ stellar phenomena such as extreme low-metallicity binary stars, X-ray binaries, and dust dissociation physics may be necessary to lessen the tension between models and observations.
Accurate predictions of the physics of interstellar medium (ISM) are vital for understanding galaxy formation and evolution. Modelling photoionized regions with complex geometry produces realistic ionization structures within the nebulae, providing the necessary physical predictions to interpret observational data. 3D photoionization codes built with Monte Carlo techniques provide powerful tools to produce the ionizing radiation field with fractal geometry. We present a high-resolution Monte Carlo modelling of a nebula with fractal geometry, and will further show how nebular geometry influences the emission-line behaviours. Our research has important implications for studies of emission-line ratios in high redshift galaxies.
The hot Jupiter HD189733b is expected to be a source of strong radio emission, due to its close proximity to its magnetically active host star. Here, we model the stellar wind of its host star, based on reconstructed surface stellar magnetic field maps. We use the local stellar wind properties at the planetary orbit obtained from our models to compute the expected radio emission from the planet. Our findings show that the planet emits with a peak flux density within the detection capabilities of LOFAR. However, due to absorption by the stellar wind itself, this emission may be attenuated significantly. We show that the best time to observe the system is when the planet is near primary transit of the host star, as the attenuation from the stellar wind is lowest in this region.
Magnetic flux rope (MFR) is closely connected with solar eruptions, such as flares and coronal mass ejections. The classical scenario assumes a single MFR for each eruption, but it is reasonable to expect multiple MFRs in a complex active region (AR). Statistically investigating AR 11897, we verify the existence of multiple MFR proxies during the AR evolution. Recently, AR 12673 in 2017 September produced the two largest flares in Solar Cycle 24. The evolutions of the AR magnetic fields and the two large flares reveal that significant flux emergence and successive interactions between different emerging dipoles resulted in the formations of multiple MFRs and twisted loop bundles, which successively erupted like a chain reaction within several minutes before the peaks of the two flares. We propose that the eruptions of a multi-flux-rope system can rapidly release enormous magnetic energy and result in large flares in solar AR.
Cosmological hydrodynamical simulations have become an important theoretical tool for understanding the formation and evolution of the first galaxies during cosmic dawn, between redshifts 5 and 15. I will introduce the FirstLight database of about 300 zoom-in simulations with a resolution of 10 parsecs. This database agrees well with observed UV luminosity functions and stellar mass functions. I will discuss the origin and evolution of the star-forming main sequence of galaxies and the main drivers of the star formation histories at these early epochs. I will show simulated SEDs from UV to IR, including stellar and nebular emission. The rest-frame UV spectra show steep slopes and a high production efficiency of Lyman continuum photons. These properties are consistent with young stellar populations with low metallicities. Simulated recombination lines allow us to link the physical conditions of the gas around these stellar populations with observables, like equivalent widths in OIII or Hα or BPT diagrams at high-z. These simulations are making predictions that will be tested for the first time in future deep fields with the James Webb Space Telescope (JWST). I will finally discuss preliminary results involving JWST mock fields and predictions for ALMA observations by post-processing FirstLight snapshots with Powderday radiative transfer code.
A filament eruption may lead to a coronal mass ejection (CME), which is one of the main driving mechanisms of space weather. This work analyses a slow and flareless CME event associated with an erupting quiescent filament. By using the extreme ultraviolet images of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, we trace the evolution of the filament in detail, and present the manifestations of the role of magnetic fields in the low corona. The results suggest the existence of a magnetic flux rope in the pre-eruption structures. Our study of this complex magnetic system may lead to a better understanding of CMEs and their impact on the space weather.
Starburst galaxies at z ∼ 2 – 4 are among the most intensely star-forming galaxies in the universe. The way they accrete their gas to form stars at such high rates is still a controversial issue. ALMA has detected the CH+ (J = 1-0) line in emission and/or absorption in all the gravitationally lensed starburst galaxies targeted so far at z ∼ 3. Its unique spectroscopic and chemical properties enable CH+ to highlight the sites of most intense dissipation of mechanical energy. The absorption lines reveal highly turbulent, massive reservoirs of low-density molecular gas. The broad emission lines, arising in myriad UV-irradiated molecular shocks, reveal powerful galactic winds. The CH+ lines therefore probe the fate of prodigious energy releases, due to infall and/or outflows, and primarily stored in turbulence before being radiated by cool molecular gas. The turbulent reservoirs act as mass and energy buffers over the duration of the starburst phase.
We have studied turbulent plasma as a complex system applying the method known as Horizontal Visibility Graph (HVG) to obtain the Kullback-Leibler Divergence (KLD) as a first approach to characterize the reversibility of the time series of the magnetic fluctuations. For this, we have developed the method on Particle In Cell (PIC) simulations for a magnetized plasma and on solar wind magnetic time series, considering slow and fast wind. Our numerical results show that low irreversibility values are verified for magnetic field time series associated with Maxwellian distributions. In addition, considering the solar wind plasma, our preliminary results seem to indicate that greater irreversibility degrees are reached by the magnetic field associated with slow solar wind.