No CrossRef data available.
Published online by Cambridge University Press: 24 September 2020
A filament eruption may lead to a coronal mass ejection (CME), which is one of the main driving mechanisms of space weather. This work analyses a slow and flareless CME event associated with an erupting quiescent filament. By using the extreme ultraviolet images of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, we trace the evolution of the filament in detail, and present the manifestations of the role of magnetic fields in the low corona. The results suggest the existence of a magnetic flux rope in the pre-eruption structures. Our study of this complex magnetic system may lead to a better understanding of CMEs and their impact on the space weather.