Concerted efforts by stakeholders could overcome the hurdles and enable a viable recycling system for automotive LIBs by the time many of them go out of service.
Lithium-ion batteries (LIBs) were commercialized in the early 1990s and gained popularity first in consumer electronics, then more recently for electric vehicle (EV) propulsion, because of their high energy and power density and long cycle life. Their rapid adoption brings with it the challenge of end-of-life waste management. There are strong arguments for LIB recycling from environmental sustainability, economic, and political perspectives. Recycling reduces material going into landfills and avoids the impacts of virgin material production. LIBs contain high-value materials like cobalt and nickel, so recycling can reduce material and disposal costs, leading to reduced EV costs. Battery recycling can also reduce material demand and dependence on foreign resources, such as cobalt from Democratic Republic of the Congo, where much production relies on armed aggression and child labor.
Several companies are finding ways to commercialize recycling of the increasingly diverse LIB waste stream. Although Pb-acid battery recycling has been successfully implemented, there are many reasons why recycling of LIBs is not yet a universally well-established practice. Some of these are technical constraints, and others involve economic barriers, logistic issues, and regulatory gaps. This paper first builds a case as to why LIBs should be recycled, next compares recycling processes, and then addresses the different factors affecting LIB recycling to direct future work towards overcoming the barriers so that recycling can become standard practice.