Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T19:55:43.860Z Has data issue: false hasContentIssue false

CNFs/S1-xSex Composites as Promising Cathode Materials for High-Energy Lithium-Sulfur Batteries

Published online by Cambridge University Press:  22 February 2019

Gaind P. Pandey*
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA70125
Kobi Jones
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA70125
Lamartine Meda
Affiliation:
Department of Chemistry, Xavier University of Louisiana, New Orleans, LA70125
*
Get access

Abstract

High-energy lithium-sulfur (Li-S) batteries still suffer from poor rate capability and short cycle life caused by the polysulfides shuttle and insulating nature of S (and the discharge product, Li2S). Selenium disulfide (SeS2), with a theoretical specific capacity of 1342 mAh g−1, is a promising cathode material as it has better conductivity compared to sulfur. The electrochemical reaction kinetics of CNFs-S/SeS2 composites (denoted as CNFs/S1-xSex, where x ≤ 0.1) are expected to be remarkably improved because of the better conductivity of SeS2 compared to sulfur. Here, a high-performance composite cathode material of CNFs/S1-xSex for novel Li-S batteries is reported. The CNFs/S1-xSex composites combine the higher conductivity and higher density of SeS2 with high specific capacity of sulfur. The CNFs/S1-xSex electrode shows good initial discharge capacity of ∼1050 mAh g−1 at 0.05 C rate with high mass loading of materials (∼6-7 mg cm−2 of composites) and > 97% initial coulombic efficiency. The CNFs/S1-xSex electrode shows more than 600 mAh g-1 specific capacity after 50 charge-discharge cycles at 0.5C rate, much higher compared to the CNFs/S cathodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choi, J. W. and Aurbach, D., Nat. Rev. Mater. 1, 6013 (2016).CrossRefGoogle Scholar
Manthiram, A., Chung, S. H. and Zu, C., Adv. Mater. 27, 1980 (2015).CrossRefGoogle Scholar
Yang, Y., Zheng, G. Y. and Cui, Y., Chem. Soc. Rev. 42, 3018 (2013).CrossRefGoogle Scholar
Liu, J., Wang, M., Xu, N., Qian, T. and Yan, C., Energy Storage Materials 15, 53 (2018).CrossRefGoogle Scholar
Peng, H.-J., Huang, J.-Q., Cheng, X.-B. and Zhang, Q., Adv. Energy Mater. 7, 1700260 (2017).CrossRefGoogle Scholar
He, Y., Chang, Z., Wu, S. and Zhou, H., J. Mater. Chem. A 6, 6155 (2018).CrossRefGoogle Scholar
Seh, Z. W., Sun, Y., Zhang, Q. and Cui, Y., Chem. Soc. Rev. 45, 5605 (2016).CrossRefGoogle Scholar
Pang, Q., Liang, X., Kwok, C. Y. and Nazar, L. F., Nat. Energy 1, 16132 (2016).CrossRefGoogle Scholar
Chung, S.-H., Chang, C.-H. and Manthiram, A., Adv. Funct. Mater. 28, 1801188 (2018).CrossRefGoogle Scholar
Cui, Y., Abouimrane, A., , A., Lu, J., Bolin, T., Ren, Y., Weng, W., Sun, C., Maroni, V.A., Heald, S. M. and Amine, K., J. Am. Chem. Soc. 135, 8047 (2013).CrossRefGoogle Scholar
Zhang, Z., Yang, X., Guo, Z., Qu, Y., Li, J. and Lai, Y., J. Power Sources 279, 88 (2015).CrossRefGoogle Scholar
Cui, A. Abouimrane, A., Sun, C. J., Ren, Y. and Amine, K., Chem. Commun. 50, 5576 (2014).CrossRefGoogle Scholar
Li, X., Liang, J., Zhang, K., Hou, Z., Zhang, W., Zhu, Y. and Qian, Y., Energy Environ. Sci. 8, 3181 (2015).CrossRefGoogle Scholar
Zhang, Z., Jiang, S., Lai, Y., Li, J., Song, J. and Li, J., J. Power Sources 284, 95 (2015).CrossRefGoogle Scholar
Sun, F., Cheng, H., Chen, J., Zheng, N., Li, Y. and Shi, J., ACS Nano 10, 8289 (2016).CrossRefGoogle Scholar
Dong, P., Han, K. S., Lee, J.-I., Zhang, X., Cha, Y. and Song, M.-K., ACS Appl. Mater. Interfaces 10, 29565 (2018).CrossRefGoogle Scholar
Li, Z., Zhang, J., Wu, H. B. and (David) Lou, X. W., Adv. Energy Mater. 7, 1700281 (2017).CrossRefGoogle Scholar
Boudreau, R. A. and Haendler, H. M., J. Solid State Chem., 36, 289 (1981).CrossRefGoogle Scholar
Taavitsainen, J., Lange, H. and Laitinen, R. S., J. Mol. Struct. (Theochem), 453, 197 (1998).CrossRefGoogle Scholar
Laitinen, R. S. and Pakkanen, T. A., Inorg. Chem., 26, 2598 (1987).CrossRefGoogle Scholar
Weng, W., Pol, V. G., and Amine, K., Adv. Mater., 25, 1608 (2013).CrossRefGoogle Scholar
Xu, G., Xu, Y., Fang, J., Peng, X., Fu, F., Huang, L., Li, J. and Sun, S., ACS Appl. Mater. Interfaces, 5, 10782 (2013).CrossRefGoogle Scholar
Qiu, Y., Li, W., Zhao, W., Li, G., Hou, Y., Liu, M., Zhou, L., Ye, F., Li, H., Wei, Z., Yang, S., Duan, W., Ye, Y., Guo, J. and Zhang, Y., Nano Lett., 14, 4821 (2014).CrossRefGoogle Scholar