Let
$K$ be a number field. For any system of semisimple mod
$\ell$ Galois representations
$\{{\it\phi}_{\ell }:\text{Gal}(\bar{\mathbb{Q}}/K)\rightarrow \text{GL}_{N}(\mathbb{F}_{\ell })\}_{\ell }$ arising from étale cohomology (Definition 1), there exists a finite normal extension
$L$ of
$K$ such that if we denote
${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/K))$ and
${\it\phi}_{\ell }(\text{Gal}(\bar{\mathbb{Q}}/L))$ by
$\bar{{\rm\Gamma}}_{\ell }$ and
$\bar{{\it\gamma}}_{\ell }$, respectively, for all
$\ell$ and let
$\bar{\mathbf{S}}_{\ell }$ be the
$\mathbb{F}_{\ell }$-semisimple subgroup of
$\text{GL}_{N,\mathbb{F}_{\ell }}$ associated to
$\bar{{\it\gamma}}_{\ell }$ (or
$\bar{{\rm\Gamma}}_{\ell }$) by Nori’s theory [On subgroups of
$\text{GL}_{n}(\mathbb{F}_{p})$, Invent. Math. 88 (1987), 257–275] for sufficiently large
$\ell$, then the following statements hold for all sufficiently large
$\ell$.
A(i) The formal character of
$\bar{\mathbf{S}}_{\ell }{\hookrightarrow}\text{GL}_{N,\mathbb{F}_{\ell }}$ (Definition 1) is independent of
$\ell$ and equal to the formal character of
$(\mathbf{G}_{\ell }^{\circ })^{\text{der}}{\hookrightarrow}\text{GL}_{N,\mathbb{Q}_{\ell }}$, where
$(\mathbf{G}_{\ell }^{\circ })^{\text{der}}$ is the derived group of the identity component of
$\mathbf{G}_{\ell }$, the monodromy group of the corresponding semi-simplified
$\ell$-adic Galois representation
${\rm\Phi}_{\ell }^{\text{ss}}$.
A(ii) The non-cyclic composition factors of
$\bar{{\it\gamma}}_{\ell }$ and
$\bar{\mathbf{S}}_{\ell }(\mathbb{F}_{\ell })$ are identical. Therefore, the composition factors of
$\bar{{\it\gamma}}_{\ell }$ are finite simple groups of Lie type of characteristic
$\ell$ and are cyclic groups.
B(i) The total
$\ell$-rank
$\text{rk}_{\ell }\bar{{\rm\Gamma}}_{\ell }$ of
$\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) is equal to the rank of
$\bar{\mathbf{S}}_{\ell }$ and is therefore independent of
$\ell$.
B(ii) The
$A_{n}$-type
$\ell$-rank
$\text{rk}_{\ell }^{A_{n}}\bar{{\rm\Gamma}}_{\ell }$ of
$\bar{{\rm\Gamma}}_{\ell }$ (Definition 14) for
$n\in \mathbb{N}\setminus \{1,2,3,4,5,7,8\}$ and the parity of
$(\text{rk}_{\ell }^{A_{4}}\bar{{\rm\Gamma}}_{\ell })/4$ are independent of
$\ell$.