Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:38:04.813Z Has data issue: false hasContentIssue false

On the derived category of Grassmannians in arbitrary characteristic

Published online by Cambridge University Press:  15 April 2015

Ragnar-Olaf Buchweitz
Affiliation:
Department of Computer and Mathematical Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada email [email protected]
Graham J. Leuschke
Affiliation:
Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA email [email protected]
Michel Van den Bergh
Affiliation:
Departement WNI, Universiteit Hasselt, 3590 Diepenbeek, Belgium email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider Grassmannians in arbitrary characteristic. Generalizing Kapranov’s well-known characteristic-zero results, we construct dual exceptional collections on them (which are, however, not strong) as well as a tilting bundle. We show that this tilting bundle has a quasi-hereditary endomorphism ring and we identify the standard, costandard, projective and simple modules of the latter.

Type
Research Article
Copyright
© The Authors 2015 

References

Boffi, G., The universal form of the Littlewood–Richardson rule, Adv. Math. 68 (1988), 4063; MR 931171.CrossRefGoogle Scholar
Bondal, A. I., Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 2544; MR 992977.Google Scholar
Bondal, A. I. and Kapranov, M. M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 11831205, 1337; MR 1039961.Google Scholar
Bondal, A. I. and Van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), 136, 258; MR 1996800.CrossRefGoogle Scholar
Bourbaki, N., Lie groups and Lie algebras, Elements of Mathematics (Berlin) (Springer, Berlin, 2002), ch. 4–6. Translated from the 1968 French original by Andrew Pressley;MR 1890629.CrossRefGoogle Scholar
Buchweitz, R.-O., Leuschke, G. J. and Van den Bergh, M., Non-commutative desingularization of determinantal varieties, II: Arbitrary minors, Preprint (2013), arXiv:1106.1833.Google Scholar
Cline, E. T., Parshall, B. and Scott, L., A Mackey imprimitivity theory for algebraic groups, Math. Z. 182 (1983), 447471; MR 701363.CrossRefGoogle Scholar
Cline, E. T., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 8599; MR 961165.Google Scholar
Dlab, V. and Ringel, C. M., The module theoretical approach to quasi-hereditary algebras, in Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society Lecture Note Series, vol. 168 (Cambridge University Press, Cambridge, 1992), 200224; MR 1211481.CrossRefGoogle Scholar
Donkin, S., A filtration for rational modules, Math. Z. 177 (1981), 18; MR 611465.CrossRefGoogle Scholar
Donkin, S., On tilting modules for algebraic groups, Math. Z. 212 (1993), 3960; MR 1200163.CrossRefGoogle Scholar
Doubilet, P., Rota, G.-C. and Stein, J., On the foundations of combinatorial theory. IX. Combinatorial methods in invariant theory, Stud. Appl. Math. 53 (1974), 185216; MR 0498650.CrossRefGoogle Scholar
Erdmann, K., Schur algebras of finite type, Quart. J. Math. Oxford Ser. (2) 44 (1993), 1741; MR 1206201.CrossRefGoogle Scholar
Erdmann, K., Symmetric groups and quasi-hereditary algebras, in Finite-dimensional algebras and related topics (Ottawa, ON, 1992), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences vol. 424 (Kluwer Academic Publishing, Dordrecht, 1994), 123161; MR 1308984.CrossRefGoogle Scholar
Fulton, W., Young tableaux, London Mathematical Society Student Texts, vol. 35 (Cambridge University Press, Cambridge, 1997); MR 1464693.Google Scholar
Hille, L., Homogeneous vector bundles and Koszul algebras, Math. Nachr. 191 (1998), 189195; MR 1621314.CrossRefGoogle Scholar
Hille, L. and Perling, M., Tilting bundles on rational surfaces and quasi-hereditary algebras, Preprint (2011), arXiv:1110.5843.Google Scholar
Jantzen, J. C., Representations of algebraic groups, Mathematical Surveys and Monographs, vol. 107, second edition (American Mathematical Society, Providence, RI, 2003); MR 2015057.Google Scholar
Kaneda, M., Kapranov’s tilting sheaf on the Grassmannian in positive characteristic, Algebr. Represent. Theory 11 (2008), 347354; MR 2417509.CrossRefGoogle Scholar
Kapranov, M. M., On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), 479508; MR 939472.CrossRefGoogle Scholar
Kempf, G. R., Linear systems on homogeneous spaces, Ann. of Math. (2) 103 (1976), 557591; MR 0409474.CrossRefGoogle Scholar
Kuznetsov, A., Hochschild homology and semiorthogonal decompositions, Preprint (2009),arXiv:0904.4330.Google Scholar
Levine, M., Srinivas, V. and Weyman, J., K-theory of twisted Grassmannians, K-Theory 3 (1989), 99121; MR 1029954.CrossRefGoogle Scholar
Sam, S. V. and Weyman, J., Pieri resolutions for classical groups, J. Algebra 329 (2011), 222259. See also the revised and augmented version at arXiv:0907.4505v5; MR 2769324.CrossRefGoogle Scholar
Scott, L. L., Simulating algebraic geometry with algebra. I, in The algebraic theory of derived categories, The Arcata conference on representations of finite groups (Arcata, California, 1986), Proceedings of Symposia in Pure Mathematics, vol. 47 (American Mathematical Society, Providence, RI, 1987), 271281; MR 933417.Google Scholar
Weyman, J., Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics vol. 149 (Cambridge University Press, Cambridge, 2003); MR 1988690.CrossRefGoogle Scholar