Er ions with doses ranging from 1×1013 cm−2 to 1×1015 cm−2 were implanted into Al0.70Ga0.30As on GaAs substrates. at 800 °C. Photoluminescence (PL) intensity of Er-related emission around 1.54 μm was enhanced by co-implanted oxygen (O). The optimum dose of Er ion was 1×1014 cm−2 and O ion was 1×1015 cm−2, respectively. Furthermore, from the temperature dependence of the PL intensity of sample implanted with the optimum dose, we estimated the values of E1, E2, and E3, the activation energies in order to investigate the rapid thermal quenching of Er ion in Al0.70Ga0.30As. We found that PL intensity of Er-related emission, in addition to O dose, was enhanced approximately twenty two times at room temperature. And from the temperature dependence of the lifetime of the optimum dose of Er and O, the value 245meV of EA, the activation energy for the decrease of the lifetime, was nearly equal to the value 235meV of E3. Based on the result, the decrease of the lifetime confirms that the radiative efficiency is lower; therefore, we propose that rapid thermal quenching occurs at temperatures above 200 K due to the decrease of the radiative efficiency.